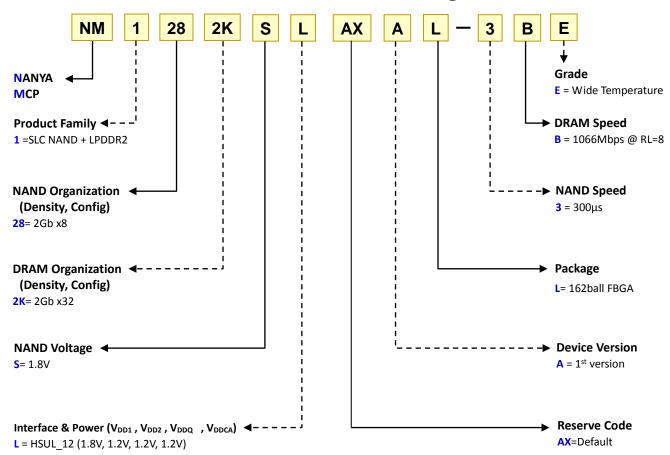
MCP Specification

2Gb SLC NAND Flash (X8) + 2Gb LPDDR2 (X32)


Nanya Technology Corporation

All Rights Reserved. ©

Ordering Information

MCP		NA	ND			DRAM		
Part Number	Туре	Density (Org.)	Program Time	Erase Time	Туре	Density (Org.)	Speed	RL
NM1 <mark>2</mark> 82KSLAXAL-3BE	SLC	2Gb (256Mb X 8)	300µs	3.5ms	LPDDR2	2Gb (64Mb X 32)	1066	8

NANYA MCP Part Numbering Guide

Version 1.3 3 Nanya Technology Corp. 06/2018 All Rights Reserved. ©

Features

MCP

- Separate SLC NAND and LPDDR2 RAM interfaces
- Lead-free (RoHS compliant) and Halogen-free Package: 162-ball VFBGA 8.00 x 10.50 x 1.00 (mm)
- Operating temperature range: -40°C to +85°C

2Gb X8 SLC NAND

Voltage Supply(VCC/VCCQ): 1.70V ~ 1.95V

Organization

- Memory Cell Array: 2176 x 128K x 8

- Register: 2176 x 8 - Page Size: 2176 Bytes

- Block Erase Size: (128K + 8K) Bytes

Modes

Read, Reset, Auto Page Program, Auto Block Erase, Status Read, Page Copy, Multi Page Program, Multi Block Erase, Multi Page Copy, Multi Page Read

Mode control

- Serial input/output
- Command control

Number of valid blocks

- Min 2008 blocks
- Max 2048 blocks

Access time

- Cell array to register: 25µs max

- Serial Read Cycle: 25ns min (CL=30pF)

Program/Erase time

- Auto Page Program: 300µs/page typical

- Auto Block Erase: 3.5ms/block typical

Operating current

- Read (25ns cycle): 30 mA max - Program (avg.): 30 mA max

- Erase (avg.): 30 mA max

- Standby: 50 µA max

8 bit ECC for each 512 Bytes is required.

2Gb X32 LPDDR2

• Speed, Addressing and Retention Specification

64Mb x 32
1066 / RL=8
S4B
8
BA0-BA2
R0-R13
C0-C8
3.9

JEDEC LPDDR2 Compliant

- Low Power Consumption
- Double-data rate on DQs, DQS, DM and CA bus
- 4n Prefetch Architecture

HSUL12 interface and Power Supply

- VDD1= 1.70 to 1.95V
- VDD2/VDDQ/VDDCA = 1.14 to 1.3V

Signal Integrity

- Configurable DS for system compatibility
- ZQ calibration for the accuracy of output driver strength over Process, Voltage and Temperature

Training for Signals' Synchronization

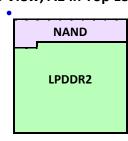
- DQ Calibration offering specific DQ output patterns

Data Integrity

- DRAM built-in Temperature Sensor for Temperature Compensated Self Refresh (TCSR)
- Auto Refresh, Self Refresh and PASR Modes

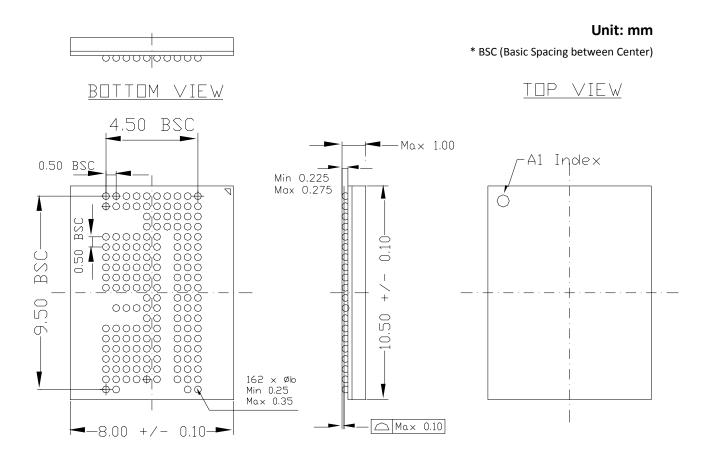
Power Saving Modes

- Deep Power Down Mode (DPD)
- Partial Array Self Refresh (PASR)
- Clock Stop capability during idle period


Programmable Function

- Output Drive Impedance (34.3/40/48/60/80/120)
- Burst Lengths (4/8/16)
- Burst Type (Sequential/Interleaved)
- Read Latency (3/4/5/6/7/8), Write Latency (1/2/3/4)
- nWR (3/4/5/6/7/8)

Ball Assignment - (162b Flash X 8 + DRAM X 32)


Part Number: NM1282KSLAXAL-XXX

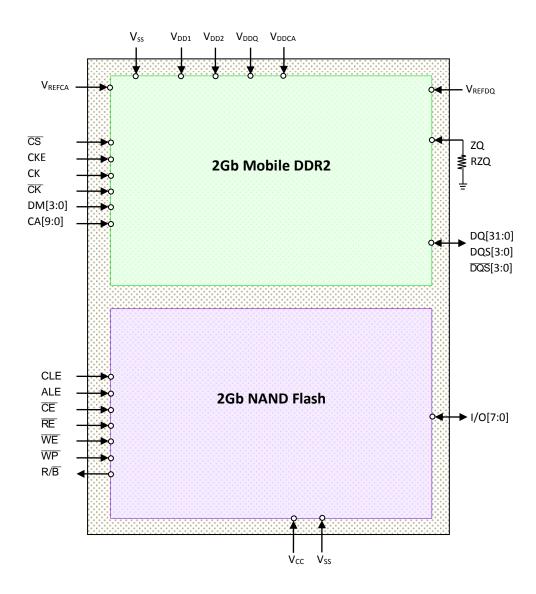
Top View, A1 in Top Left Corner

_										_	_
•	1	2	3	4	5	6	7	8	9	10	
Α	DNU	DNU	WP	CLE	VCC	I/O 4	I/O 7	VCC	DNU	DNU	Α
В	DNU	VCC	NC	ALE	RE	I/O 5	NC	NC	VSS	DNU	В
С	NC	I/O 1	I/O 3	WE	R/B	I/O 6	NB	NB	NB	NB	С
D	NC	I/O 0	I/O 2	CE	NC	NC	NB	NB	NB	NB	D
E	VSS	NC	NC	NB	VDD2	VDD1	DQ31	DQ29	DQ26	DNU	Ε
F	VDD1	VSS	NC	NB	VSS	VSS	VDDQ	DQ25	VSS	VDDQ	F
G	VSS	VDD2	ZQ	NB	VDDQ	DQ30	DQ27	DQS3	DQS3	VSS	G
Н	VSS	CA9	CA8	NB	DQ28	DQ24	DM3	DQ15	VDDQ	VSS	н
J	VDDCA	CA6	CA7	NB	VSS	DQ11	DQ13	DQ14	DQ12	VDDQ	J
K	VDD2	CA5	VREFCA	NB	DQS1	DQS1	DQ10	DQ9	DQ8	VSS	K
L	VDDCA	VSS	CK	NB	DM1	VDDQ	NB	NB	NB	NB	L
М	VSS	NC	CK	NB	VSS	VDDQ	VDD2	VSS	VREFDQ	NB	M
N	CKE	NC	NC	NB	DM0	VDDQ	NB	NB	NB	NB	N
Р	CS	NC	NC	NB	DQS0	DQS0	DQ5	DQ6	DQ7	VSS	P
R	CA4	CA3	CA2	NB	VSS	DQ4	DQ2	DQ1	DQ3	VDDQ	R
Т	VSS	VDDCA	CA1	NB	DQ19	DQ23	DM2	DQ0	VDDQ	VSS	Т
U	VSS	VDD2	CA0	NB	VDDQ	DQ17	DQ20	DQS2	DQS2	VSS	U
V	VDD1	VSS	NC	NB	VSS	VSS	VDDQ	DQ22	VSS	VDDQ	٧
W	DNU	NC	NC	NB	VDD2	VDD1	DQ16	DQ18	DQ21	DNU	W
Υ	DNU	DNU	NB	NB	NB	NB	NB	NB	DNU	DNU	Υ
	1	2	3	4	5	6	7	8	9	10	•

Package Outline Drawing (8.00mm x 10.50mm x 1.00mm)

Ball Description - 2Gb X8 SLC NAND

Symbol	Туре	Function
X8: I/O[7:0]	Input/output	Data Bus: The I/O0 to 7 pins are used as a port for transferring address, command and input/output data to and from the device.
CLE	Input	Command Latch Enable: The CLE input signal is used to control loading of the operation mode command into the internal command register. The command is latched into the command register from the I/O port on the rising edge of the WE signal while CLE is High.
ALE	Input	Address Latch Enable: The ALE signal is used to control loading address information into the internal address register. Address information is latched into the address register from the I/O ports on the rising edge of WE while ALE is High.
CE	Input	Chip Enable: The device goes into a low-power Standby mode when \overline{CE} goes High during the device is in Ready state. The \overline{CE} signal is ignored when device is in Busy state (RY / \overline{BY} = L), such as during a Program or Erase or Read operation, and will not enter Standby mode even if the \overline{CE} input goes High.
RE	Input	Read Enable: The RE signal controls serial data output. Data is available tREA after the falling edge of RE. The internal column address counter is also incremented (Address = Address +1) on this falling edge.
WE	Input	Write Enable: The WE signal is used to control the acquisition of data from the I/O port.
WP	Input	Write Protect: The \overline{WP} signal is used to protect the device from accidental programming or erasing. The internal voltage regulator is reset when \overline{WP} is Low. This signal is usually used protecting the data during the power-on/off sequence when input signals are invalid.
RY/BŸ	Output	Ready / Busy Output: The RY / \overline{BY} output signal is used to indicate the operation condition of the device. The RY / \overline{BY} signal is in Busy state (RY / \overline{BY} =L) during the Program, Erase and Read operations and will return to Ready state (RY / \overline{BY} =H) after completion of the operation. The output buffer for this signal is an open drain and has to be pulled-up to Vccq with an appropriate resister. If RY / \overline{BY} signal is not pulled-up to Vccq ("Open" state), device operation cannot guarantee.
VCC	Supply	Power
VSS	Supply	Ground
NC	_	No Connect: These pins should be left unconnected.


Ball Description - 2Gb X32 LPDDR2

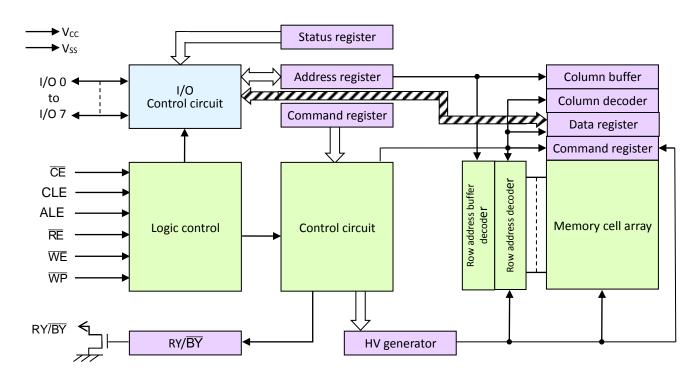
Symbol	Туре	Function
ск, ск	Input	Clock: CK and $\overline{\text{CK}}$ are differential clock inputs. All Double Data Rate (DDR) CA inputs are sampled on both positive and negative edge of CK. Single Data Rate (SDR) inputs, $\overline{\text{CS}}$ and CKE, are sampled at the positive Clock edge. Clock is defined as the differential pair, CK and $\overline{\text{CK}}$. The positive Clock edge is defined by the crosspoint of a rising CK and a falling $\overline{\text{CK}}$. The negative Clock edge is defined by the crosspoint of a falling CK and a rising $\overline{\text{CK}}$.
CKE	Input	Clock Enable: CKE high activates, and CKE low deactivates internal clock signals, and device input buffers and output drivers. Power saving modes are entered and exited through CKE transitions. CKE is considered part of the command code. CKE is sampled at the positive Clock edge.
CS	Input	Chip Select: $\overline{\text{CS}}$ is considered part of the command code. $\overline{\text{CS}}$ is sampled at the positive Clock edge.
CA0 – CA9	Input	Command/Address Inputs: Uni-directional command/address bus inputs. Provide the command and address inputs according to the command truth table. CA is considered part of the command code.
DM0 – DM3	Input	Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coincident with that input data during a Write access. DM is sampled on both edges of DQS. Although DM pins are input-only, the DM loading matched the DQ and DQS (or DQS). DM0 corresponds to the data on DQ0-DQ7, DM1 corresponds to the data on DQ8-DQ15, DM2 corresponds to the data on DQ16-DQ23, and DM3 corresponds to the data on DQ24-DQ31.
DQ0-DQ31	Input/output	Data Bus: Bi-directional Input / Output data bus.
DQS0-3, DQS0-3	Input/output	Data Strobe (Bi-directional, Differential): The data strobe is bi-directional (used for read and write data) and Differential (DQS and \overline{DQS}). It is output with read data and input with write data. DQS is edge-aligned to read data, and centered with write data. DQS0 & $\overline{DQS0}$ corresponds to the data on DQ0-DQ7, DQS1 & $\overline{DQS1}$ corresponds to the data on DQ8-DQ15, DQS2 & $\overline{DQS2}$ corresponds to the data on DQ16-DQ23, DQS3 & $\overline{DQS3}$ corresponds to the data on DQ24-DQ31.
NC	_	No Connect: No internal electrical connection is present.
ZQ	Input	Reference Pin for Output Drive Strength Calibration. External impedance (240-ohm): this signal is used to calibrate the device output impedance.
V _{DD1}	Supply	Core Power Supply 1: Core power supply
VDD2	Supply	Core Power Supply 2: Core power supply
VDDQ	Supply	DQ Power Supply: Isolated on the die for improved noise immunity.
VDDCA	Supply	Input Receiver Power Supply: Power supply for CA0-9, CKE, CS, CK, and CK input buffers.
VREFDQ, VREFCA	Supply	Reference Voltage: VREFDQ is reference for DQ input buffers. VREFCA is reference for Command / Address input buffers.
Vss	Supply	Ground

NOTE 1: The signal may show up in a different symbol but it indicates to the same thing. e.g., $/CK = CK\# = \overline{CK} = CKb$, $/DQS = DQS\# = \overline{DQS} = DQSb, /CS = CS\# = \overline{CS} = CSb.$

Version 1.3 8 Nanya Technology Corp. 06/2018

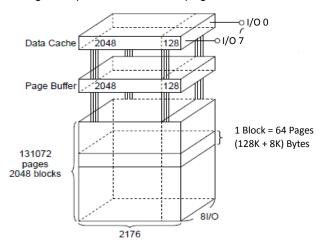
Functional Block Diagram

2Gb(X8) SLC NAND Flash


Descriptions

The device is a single 1.8V 2Gbit (2,281,701,376 bits) NAND Electrically Erasable and Programmable Read-Only Memory (NAND E²PROM) organized as X8: (2048 + 128) bytes x 64 pages x 2048blocks.

The device has 2176-bytes static registers which allow program and read data to be transferred between the register and memory cell array in 2176-bytes increments. The Erase operation is implemented in a single block unit (X8=128 Kbytes + 8K bytes: 2176 bytes x 64 pages).


The device is a serial-type memory device which utilizes the I/O pins for both address and data input/output as well as for command inputs. The Erase and program operations are automatically executed making the device most suitable for applications such as solid-state file storage, voice recording, image file memory for still cameras and other systems which require high-density non-volatile memory data storage.

Function Block Diagram (X8)

Schematic Cell Layout and Address Assignment (X8)

The Program operation works on page units while the Erase operation works on block units

A page consists of 2176 bytes in which 2176 bytes are used for main memory storage and 128 bytes are for redundancy or for other uses.

1 Page = 2176 Bytes

1 Block = 2176 Bytes x 64 Pages = (128K + 8K) Bytes Capacity = 2176 Bytes × 64 Pages × 2048 Blocks

Array Address (X8)

	I/O 0	I/O 1	I/O 2	I/O 3	I/O 4	I/O 5	I/O 6	I/O 7	Address
1 st cycle	CA ₀	CA ₁	CA ₂	CA ₃	CA ₄	CA ₅	CA ₆	CA ₇	Column Address
2 nd cycle	CA ₈	CA_9	CA ₁₀	CA ₁₁	L	L	L	L	Column Address
3 rd cycle	PA_0	PA_1	PA_2	PA_3	PA_4	PA ₅	PA_6	PA ₇	Page Address
4 th cycle	PA ₈	PA_9	PA ₁₀	PA ₁₁	PA_{12}	PA ₁₃	PA ₁₄	PA ₁₅	Page Address
5 th cycle	PA ₁₆	L	L	L	L	L	L	L	Page Address

PA6 to PA16: Block address PAO to PA5: NAND address in block

Absolute Maximum Ratings

Symbol	Rating	Value	Unit	
Vcc	Power Supply Voltage	-0.6 to +2.5		
Vin	Input Voltage	-0.6 to +2.5	V	
V _{I/O}	Input / Output Voltage	-0.6 to Vcc + 0.3 (≤2.5V)		
PD	Power Dissipation	0.3	W	
Tsolder	DER Soldering Temperature (10 s) 260		°С	
T _{STG}	Storage Temperature	-55 to +125	°C	

Capacitance¹

(T_A=25 $^{\circ}$ C, f=1.0MHz)

Symbol	Parameter	Test Condition	Min	Max	Unit
C _{IN}	Input	V _{IN} =0V	_	10	pF
Соит	Output	V _{OUT} =0V	_	10	pF

NOTE 1 This parameter is periodically sampled and is not tested for every device.

Valid Blocks

Symbol	Parameter	Min	Тур.	Max	Unit
Nvb	Number of Valid Blocks	2,008	_	2,048	Blocks

NOTE 1 The device occasionally contains unusable blocks.

The first block (Block 0) is guaranteed to be a valid block at the time of shipment.

The specification for the minimum number of valid blocks is applicable over lifetime.

The number of valid blocks is on the basis of single plane operations, and this may be decreased with two plane operations.

Recommended DC Operating Conditions

Symbol	Parameter	Min	Тур.	Max	Unit
Vcc	Power Supply Voltage	1.70	_	1.95	V
Vıн	High Level Input Voltage	Vcc x 0.8	_	Vcc + 0.3	V
VIL	Low Level Input Voltage	-0.3 ¹	_	Vcc x 0.2	V

Note 1 -2V (pulse width lower than 20 ns)

DC and Operation Characteristics

 $(Ta = -25 \text{ to } 85^{\circ}\text{C}, V_{CC} = 1.70 \text{ to } 1.95\text{V})$

Symbol	Parameter	Test Conditions	Min	Тур.	Max	Unit
l _{IL}	Input Leakage Current	V _{IN} =0 to V _{CC}	_	_	±10	μA
ILO	Output Leakage Current	V _{OUT} =0 to V _{CC}	_	_	±10	μA
Icco1	Serial Read Current	CE=V _{IL} ,I _{OUT} = 0 mA, tcycle=25ns	_	_	30	mA
Icco2	Programming Current	_	_	_	30	mA
Іссоз	Erasing Current	_	_	_	30	mA
Iccs	Standby Current	$\overline{\text{CE}} = V_{\text{CC}} - 0.2 \text{ V}, \overline{\text{WP}} = 0 \text{ V/V}_{\text{CC}}$	_	_	50	μΑ
Vон	High Level Output Voltage	I _{OH} = -0.1mA	Vcc - 0.2	_	_	V
Vol	Low Level Output Voltage	$I_{OL} = 0.1 \text{mA}$	_	_	0.2	V
Iol (RY/BY)	Output Current of (RY/BY) pin	V _{OL} =0.2V	_	4	_	mA

AC Characteristics and Recommended Operating Conditions

(Ta= -25 to 85°C, Vcc=1.70 to 1.95V)

Symbol	Parameter	Min	Max	Unit
tCLS	CLE Setup Time	12	_	ns
tCLH	CLE Hold Time	5	_	ns
tCS	CE Setup Time	20	_	ns
tCH	CE Hold Time	5	_	ns
tWP	Write Pulse Width	12	_	ns
tALS	ALE Setup Time	12	_	ns
tALH	ALE Hold Time	5	_	ns
tDS	Data Setup Time	12	_	ns
tDH	Data Hold Time	5	_	ns
tWC	Write Cycle Time	25	_	ns
tWH	WE High Hold Time	10	_	ns

AC Characteristics for Operation

Symbol	Parameter	Min	Max	Unit			
tWW	WP High to WE Low	100	_	ns			
tRR	Ready to RE Falling Edge	20	_	ns			
tRW	Ready to WE Falling Edge	20	_	ns			
tRP	Read Pulse Width	12	_	ns			
tRC	Read Cycle Time	25	_	ns			
tREA	RE Access Time	_	20	ns			
tCEA	CE Access Time	_	25	ns			
tCLR	CLE Low to RE Low	10	_	ns			
tAR	ALE Low to RE Low	10	_	ns			
tRHOH	RE High to Output Hold Time	25	_	ns			
tRLOH	RE Low to Output Hold Time	5	_	ns			
tRHZ	RE High to Output High Impedance	-	60	ns			
tCHZ	CE High to Output High Impedance	_	20	ns			
tCSD	CE High to ALE or CLE Don't care	0	_	ns			
tREH	RE High Hold Time	10	_	ns			
tIR	Output-High-impedance-to-RE Falling Edge	0	_	ns			
tRHW	RE High to WE Low	30	_	ns			
tWHC	WE High to CE Low	30	_	ns			
tWHR	WE High to RE Low	60	_	ns			
tR	Memory Cell Array to Starting Address	-	25	μs			
tDCBSYR1	Data Cache Busy in Read Cache (following 31h and 3Fh)	-	25	μs			
tDCBSYR2	Data Cache Busy in Page Copy (following 3Ah)	-	30	μs			
tWB	WE High to Busy	-	100	ns			
tRST	Device Reset Time (Ready/Read/Program/Erase) – 5/5/10/500						

NOTE 1 tCLS and tALS cannot be shorter than tWP.

NOTE 2 tCS should be longer than tWP + 8ns.

AC Test Condition

Parameter	Condition		
Parameter	VCC : 1.70 to 1.95V		
Input level	VCC – 0.2 V, 0.2 V		
Input pulse rise and fall time	3ns		
Input comparison level	Vcc / 2		
Output data comparison level	Vcc / 2		
Output Load	1 TTL GATE and CL=30pF		

NOTE 1 Busy to ready time depends on the pull-up resistor tied to the RY/BY pin.

Programming / Erasing Characteristics

 $(Ta = -25 \text{ to } 85^{\circ}\text{C}, V_{CC} = 1.70 \text{ to } 1.95\text{V})$

Symbol	Parameter	Min	Тур.	Max	Unit
tPROG	Average Programming Time	-	300	700	μs
tDCBSYW1	Data Cache Busy Time in Write Cache (following 11h)	-	_	10	μs
tDCBSYW2 ¹	Data Cache Busy Time in Write Cache (following 15h)	-	_	700	μs
N	Number of Partial Program Cycles in the Same Page	-	_	4	cycle
tBERASE	Block Erase Time	_	3.5	10	ms

NOTE 1 tDCBSYW2 depends on the timing between internal programming time and data in time.

Operation Mode: Logic and Command Tables

The operation modes such as Program, Erase, Read and Reset are controlled by operations shown in command table. Address input, command input and data input/output are controlled by the CLE, ALE, $\overline{\text{CE}}$, $\overline{\text{WE}}$, $\overline{\text{RE}}$ and $\overline{\text{WP}}$ signals, as shown in Mode Selection Table.

Logic Table

CLE	ALE	CE	WE	RE	WP	Mode
Н	L	L	_ _	Н	*	Command Input
L	L	L	_ _	Н	Н	Data Input
L	Н	L	_ _	Н	*	Address Input
L	L	L	Н		*	Serial Data Output
*	*	*	*	*	Н	During Program (Busy)
*	*	*	*	*	Н	During Erase (Busy)
*	*	Н	*	*	*	During Road (Russ)
*	*	L	H ¹	H ¹	*	During Read (Busy)
*	*	*	*	*	L	Program, Erase Inhibit
*	*	Н	*	*	0V/Vcc	Stand-by

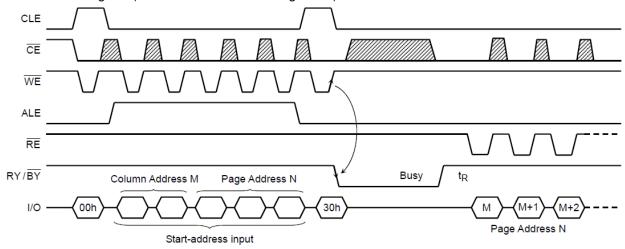
H: VIH, L=VIL*: VIH or VIL.

Note 1: If $\overline{\text{CE}}$ is low during read busy. $\overline{\text{WE}}$ and $\overline{\text{RE}}$ must be held High to avoid unintended command/address input to device or read to device. Reset or Status Read command can be input during Read Busy.

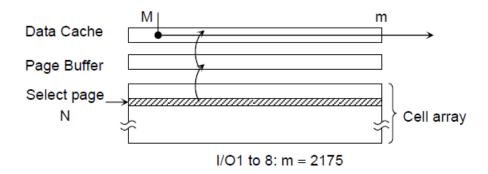
Command Table

Function	1 st Cycle	2 nd Cycle	Acceptable Command during Busy
Serial Data Input	80н	_	
Read	00н	30н	
Column Address Change in Serial Data Output	05н	Е0н	
Read with Data Cache	31н	_	
Read Start for Last Page in Read Cycle with Data Cache	3Fн	_	
Auto Page Program	80н	10н	
Column Address Change in Serial Data Input	85н	_	
Auto Program with Data Cache	80н	15н	
	80н	11н	
Multi Page Program	81н	15н	
	81 _H	10н	
Read for Page Copy (2) with Data Out	00н	ЗАн	
Auto Program with Data Cache during Page Copy (2)	8Сн	15н	
Auto Program for last page during Page Copy (2)	8Сн	10н	
Auto Block Erase	60н	D0н	
ID Read	90н	_	
Status Read	70 _H	_	0
Status Read for Multi-Page Program or Multi Block Erase	71н	_	0
Reset	FF _H	_	0

Read mode operation states

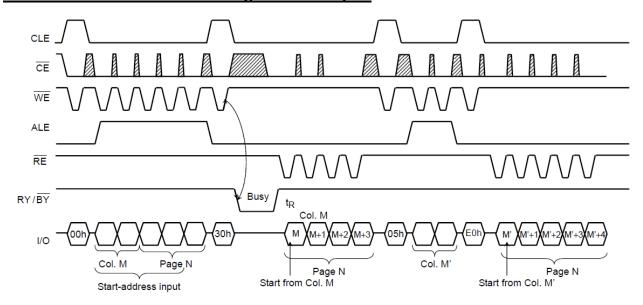

	CLE	ALE	CE	WE	RE	I/00 to I/07G	Power
Output Select	L	L	L	Н	L	Data output	Active
Output Deselect	L	L	L	Н	Н	High impedance	Active

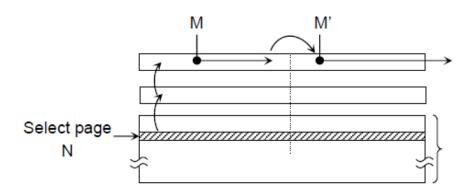
H: VIH, L=VIL


DEVICE OPERATION

Read Mode

Read mode is set when the "00h" and "30h" commands are issued to the Command register. Between the two commands, a start address for the Read mode needs to be issued. Refer to the figures below for the sequence and the block diagram (Refer to the detailed timing chart.).

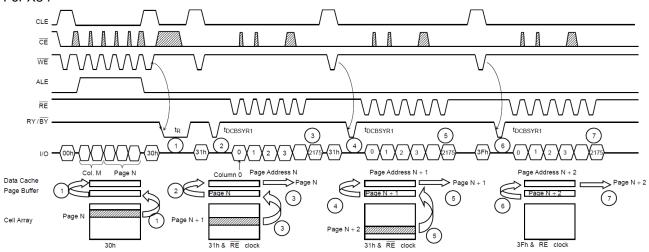

For X8:



A data transfer operation from the cell array to the Data Cache via Page Buffer starts on the rising edge of WE in the 30h command input cycle (after the address information has been latched). The device will be in the Busy state during this transfer period.

After the transfer period, the device returns to Ready state. Serial data can be output synchronously with the RE clock from the start address designated in the address input cycle.

Random Column Address Change in Read Cycle


During the serial data output from the Data Cache, the column address can be changed by inputting a new column address using the 05h and E0h commands. The data is read out in serial starting at the new column address. Random Column Address Change operation can be done multiple times within the same page.

Read Operation with Read Cahe

√y∧ NM1282KSLAXAL

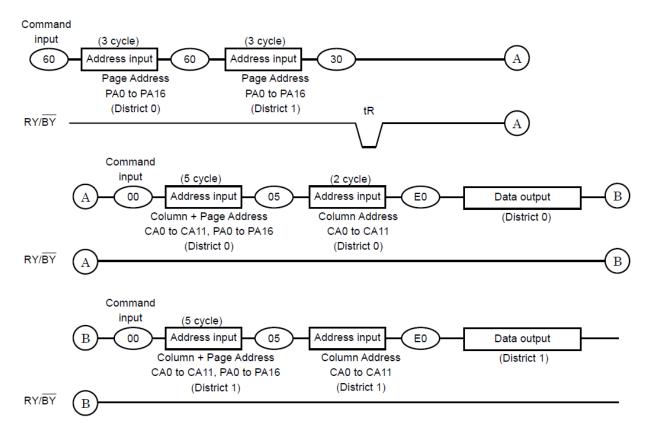
The device has a Read operation with Data Cache that enables the high speed read operation shown below. When the block address changes, this sequence has to be started from the beginning.

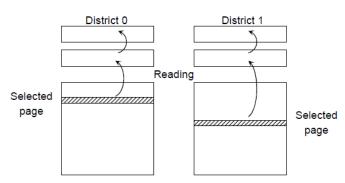
For X8:

If the 31h command is issued to the device, the data content of the next page is transferred to the Page Buffer during serial data out from the Data Cache, and therefore the tR (Data transfer from memory cell to data register) will be reduced.

- 1 Normal read. Data is transferred from Page N to Data Cache through Page Buffer. During this time period, the device outputs Busy state for tR max.
- 2 After the Ready/Busy returns to Ready, 31h command is issued and data is transferred to Data Cache from Page Buffer again. This data transfer takes tDCBSYR1 max and the completion of this time period can be detected by Ready/Busy signal.
- 3 Data of Page N + 1 is transferred to Page Buffer from cell while the data of Page N in Data cache can be read out by RE clock
- 4 The 31h command makes data of Page N + 1 transfer to Data Cache from Page Buffer after the completion of the transfer from cell to Page Buffer. The device outputs Busy state for tDCBSYR1 max.
 - This Busy period depends on the combination of the internal data transfer time from cell to Page buffer and the serial data out time.
- 5 Data of Page N + 2 is transferred to Page Buffer from cell while the data of Page N + 1 in Data cache can be read out by RE clock simultaneously.
- 6 The 3Fh command makes the data of Page N + 2 transfer to the Data Cache from the Page Buffer after the completion of the transfer from cell to Page Buffer. The device outputs Busy state for tDCBSYR1 max. This Busy period depends on the combination of the internal data transfer time from cell to Page buffer and the serial data out time.
- 7 Data of Page N + 2 in Data Cache can be read out, but since the 3Fh command does not transfer the data from the memory cell to Page Buffer, the device can accept new command input immediately after the completion of serial data out.

Multi Page Read Operation


The device has a Multi Page Read operation and Multi Page Read with Data Cache operation.


(1) Multi Page Read without Data Cache

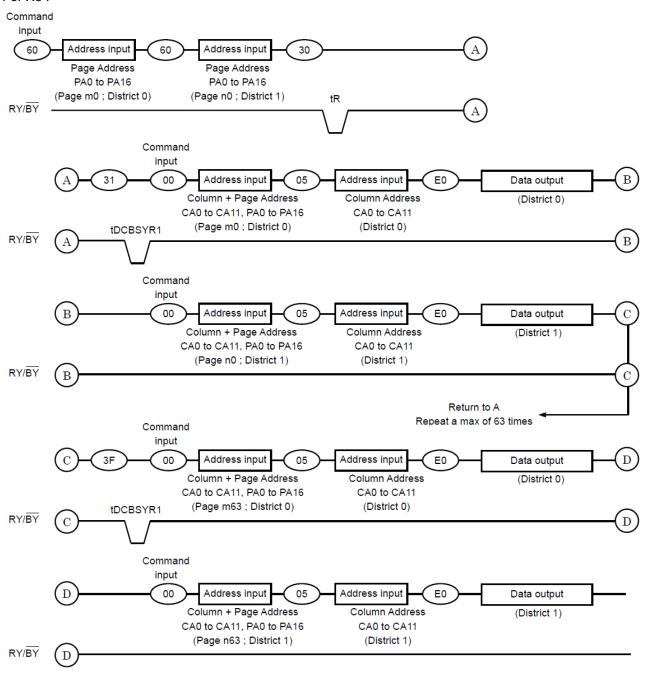
The sequence of command and address input is shown below.

Same page address (PA0 to PA5) within each district has to be selected.

For X8:

The data transfer operation from the cell array to the Data Cache via Page Buffer starts on the rising edge of $\overline{\text{WE}}$ in the 30h command input cycle (after the 2 Districts address information has been latched). The device will be in the Busy state during this transfer period.

After the transfer period, the device returns to Ready state. Serial data can be output synchronously with the RE clock from the start address designated in the address input cycle.


NANUA NM1282KSLAXAL

(2) Multi Page Read with Data Cache

When the block address changes (increments) this sequenced has to be started from the beginning. The sequence of command and address input is shown below.

Same page address (PA0 to PA5) within each district has to be selected.

For X8:

(3) Notes

(a) Internal addressing in relation with the Districts

To use Multi Page Read operation, the internal addressing should be considered in relation with the District.

- The device consists from 2 Districts.
- Each District consists from 1024 erase blocks.
- The allocation rule is follows.

District 0: Block 0, Block 2, Block 4, Block 6,..., Block 2046

District 1: Block 1, Block 3, Block 5, Block 7,..., Block 2047

(b) Address input restriction for the Multi Page Read operation

There are following restrictions in using Multi Page Read;

(Restriction)

Maximum one block should be selected from each District.

Same page address (PA0 to PA5) within two districts has to be selected.

For example;

- (60) [District 0, Page Address 0x00000] (60) [District 1, Page Address 0x00040] (30)
- (60) [District 0, Page Address 0x00001] (60) [District 1, Page Address 0x00041] (30)

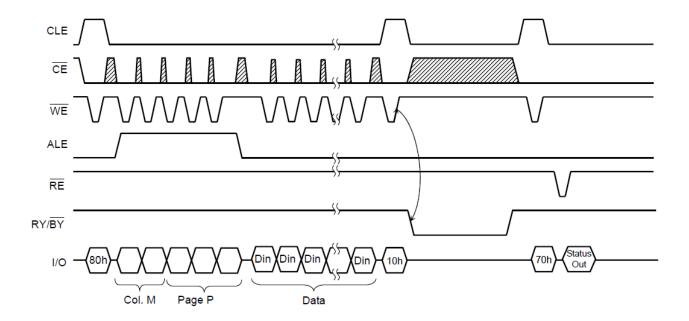
(Acceptance)

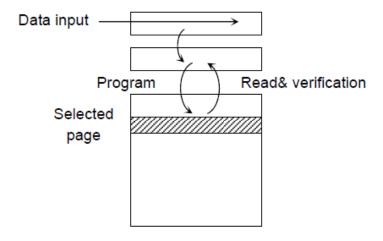
There is no order limitation of the District for the address input.

For example, following operation is accepted;

- (60) [District 0] (60) [District 1] (30)
- (60) [District 1] (60) [District 0] (30)

It requires no mutual address relation between the selected blocks from each District.

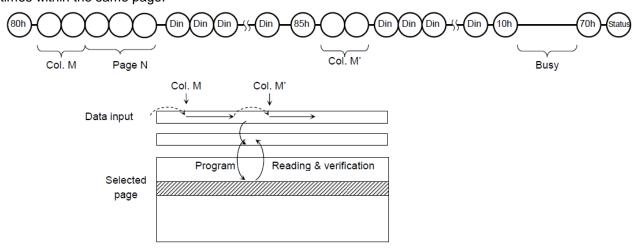

(c) WP signal


Make sure WP is held to High level when Multi Page Read operation is performed

Auto Page Program Operation

The device carries out an Automatic Page Program operation when it receives a "10h" Program command after the address and data have been input. The sequence of command, address and data input is shown below.

(Refer to the detailed timing chart.)

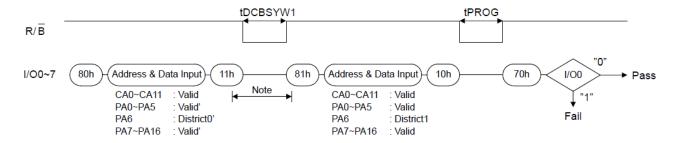

The data is transferred (programmed) from the Data Cache via the Page Buffer to the selected page on the rising edge of $\overline{\text{WE}}$ following input of the "10h" command. After programming, the programmed data is transferred back to the Page Buffer to be automatically verified by the device.

If the programming does not succeed, the Program/Verify operation is repeated by the device until success is achieved or until the maximum loop number set in the device is reached.

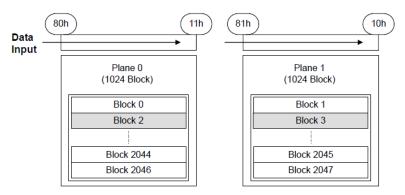
Random Column Address Change in Auto Page Program Operation

The column address can be changed by the 85h command during the data input sequence of the Auto Page Program operation.

Two address input cycles after the 85h command are recognized as a new column address for the data input. After the new data is input to the new column address, the 10h command initiates the actual data program into the selected page automatically. The Random Column Address Change operation can be repeated multiple times within the same page.

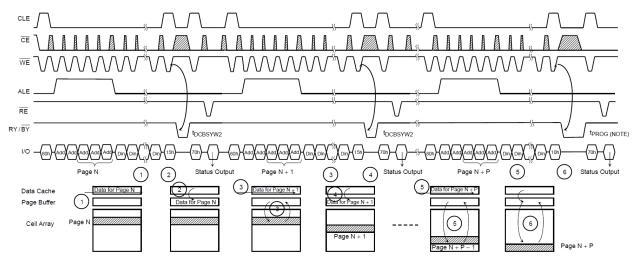


Multi Page Program


The device has a Multi Page Program, which enables even higher speed program operation compared to Auto Page Program. The sequence of command, address and data input is shown below. (Refer to the detailed timing chart.)

Although two planes are programmed simultaneously, pass/fail is not available for each page by "70h" command when the program operation completes. Status bit of I/O 1 is set to "1" when any of the pages fails. Limitation in addressing with Multi Page Program is shown below.

For X8:



NOTE: Any command between 11h and 81h is prohibited except 70h and FFh.

Auto Page Program Operation with Data Cache

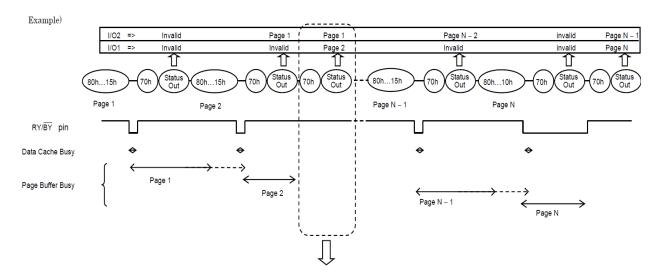
The device has an Auto Page Program with Data Cache operation enabling the high speed program operation shown below. When the block address changes this sequenced has to be started from the beginning.

Issuing the 15h command to the device after serial data input initiates the program operation with Data Cache

- 1 Data for Page N is input to Data Cache.
- 2 Data is transferred to the Page Buffer by the 15h command. During the transfer the Ready/Busy outputs Busy State (tDCBSYW2).
- 3 Data is programmed to the selected page while the data for page N + 1 is input to the Data Cache.
- 4 By the 15h command, the data in the Data Cache is transferred to the Page Buffer after the programming of page N is completed. The device output busy state from the 15h command until the Data Cache becomes empty. The duration of this period depends on timing between the internal programming of page N and serial data input for Page N + 1 (tDCBSYW2).
- 5 Data for Page N + P is input to the Data Cache while the data of the Page N + P 1 is being programmed.
- 6 The programming with Data Cache is terminated by the 10h command. When the device becomes Ready, it shows that the internal programming of the Page N + P is completed.

NOTE: Since the last page programming by the 10h command is initiated after the previous cache program, the tPROG during cache programming is given by the following;

tPROG = tPROG for the last page + tPROG of the previous page - (command input cycle + address input cycle + data input cycle time of the last page)

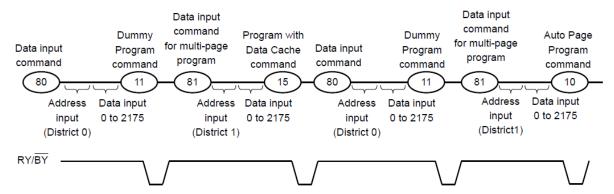

Version 1.3 Nanya Technology Corp. 06/2018 All Rights Reserved. © Pass/fail status for each page programmed by the Auto Page Programming with Data Cache operation can be detected by the Status Read operation.

- I/O1: Pass/fail of the current page program operation.
- I/O2: Pass/fail of the previous page program operation.

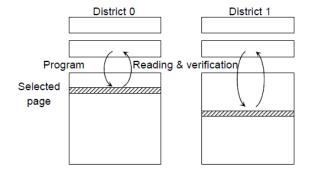
The Pass/Fail status on I/O1 and I/O2 are valid under the following conditions.

- Status on I/O1: Page Buffer Ready/Busy is Ready State.
 - The Page Buffer Ready/Busy is output on I/O6 by Status Read operation or RY / BY pin after the 10h command
- Status on I/O2: Data Cache Read/Busy is Ready State.

The Data Cache Ready/Busy is output on I/O7 by Status Read operation or RY / BY pin after the 15h command.

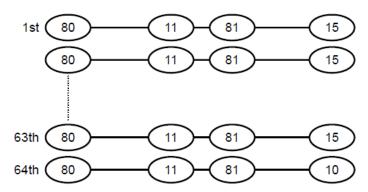

If the Page Buffer Busy returns to Ready before the next 80h command input, and if Status Read is done during this Ready period, the Status Read provides pass/fail for Page 2 on I/O1 and pass/fail result for Page1 on I/O2

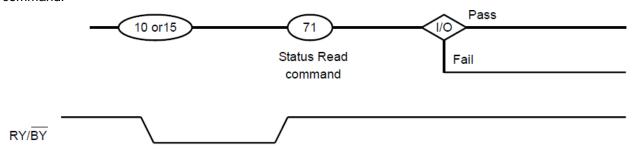
Version 1.3 29 Nanya Technology Corp. 06/2018


Multi Page Program with Data Cache

The device has a Multi Page Program with Data Cache operation, which enables even higher speed program operation compared to Auto Page Program with Data Cache as shown below. When the block address changes (increments) this sequenced has to be started from the beginning.

The sequence of command, address and data input is shown below. (Refer to the detailed timing chart.) For X8:


After "15h" or "10h" Program command is input to device, physical programing starts as follows. For details of Auto Program with Data Cache, refer to "Auto Page Program with Data Cache".


The data is transferred (programmed) from the page buffer to the selected page on the rising edge of WE following input of the "15h" or "10h" command. After programming, the programmed data is transferred back to the register to be automatically verified by the device. If the programming does not succeed, the Program/Verify operation is repeated by the device until success is achieved or until the maximum loop number set in the device is reached.

Starting the above operation from 1st page of the selected erase blocks, and then repeating the operation total 64 times with incrementing the page address in the blocks, and then input the last page data of the blocks, "10h" command executes final programming. Make sure to terminate with 81h-10h- command sequence.

In this full sequence, the command sequence is following.

After the "15h" or "10h" command, the results of the above operation is shown through the "71h" Status Read command.

The 71_H Command Status Description

1/0	Status	Output
1/0 0	Chip Status1 : Pass / Fail	Pass : 0 / Fail : 1
I/O 1	District 0 Chip Status1 : Pass / Fail	Pass : 0 / Fail : 1
1/0 2	District 1 Chip Status2 : Pass / Fail	Pass : 0 / Fail : 1
1/0 3	District 0 Chip Status1 : Pass / Fail	Pass : 0 / Fail : 1
I/O 4	District 1 Chip Status2 : Pass / Fail	Pass : 0 / Fail : 1
1/0 5	Ready / Busy	Busy : 0 / Ready : 1
I/O 6	Data Cache Ready / Busy	Busy : 0 / Ready : 1
1/0 7	Write Protect	Protected: 0 / Not Protected: 1

I/O0 describes Pass/Fail condition of district 0 and 1 (OR data of I/O1 and I/O2). If one of the districts fails during multi page program operation, it shows "Fail".

I/O1 to I/O4 shows the Pass/Fail condition of each district. For details on "Chip Status 1" and "Chip Status2" refer to section "Status Read".

Internal addressing in relation with the Districts

To use Multi Page Program operation, the internal addressing should be considered in relation with the District.

- · The device consists from 2 Districts.
- Each District consists from 1024 erase blocks.
- · The allocation rule is follows.

District 0: Block 0, Block 2, Block 4, Block 6,..., Block 2046

District 1: Block 1, Block 3, Block 5, Block 7,..., Block 2047

Address input restriction for the Multi Page Program with Data Cache operation

There are following restrictions in using Multi Page Program with Data Cache;

(Restriction)

Maximum one block should be selected from each District.

Same page address (PA0 to PA5) within two districts has to be selected.

For example;

(80) [District 0, Page Address 0x00000] (11) (81) [District 1, Page Address 0x00040] (15 or 10)

(80) [District 0, Page Address 0x00001] (11) (81) [District 1, Page Address 0x00041] (15 or 10)

(Acceptance)

There is no order limitation of the District for the address input.

For example, following operation is accepted;

(80) [District 0] (11) (81) [District 1] (15 or 10)

(80) [District 1] (11) (81) [District 0] (15 or 10)

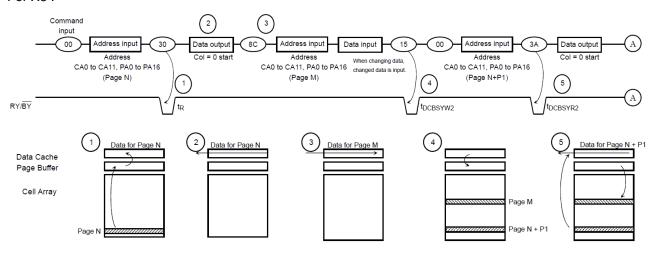
It requires no mutual address relation between the selected blocks from each District.

Operating restriction during the Multi Page Program with Data Cache operation

(Restriction)

The operation has to be terminated with "10h" command.

Once the operation is started, no commands other than the commands shown in the timing diagram is allowed to be input except for Status Read command and reset command.

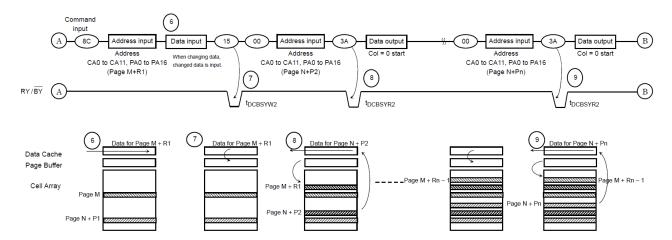

NM1282KSLAXAL

Page Copy (2)

By using Page Copy (2), data in a page can be copied to another page after the data has been read out.

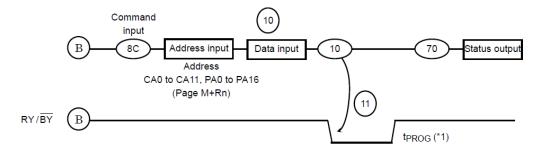
When the block address changes (increments) this sequenced has to be started from the beginning.

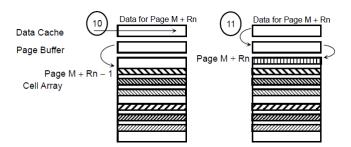
For X8:



Page Copy (2) operation is as following.

- 1 Data for Page N is transferred to the Data Cache.
- 2 Data for Page N is read out.
- 3 Copy Page address M is input and if the data needs to be changed, changed data is input.
- 4 Data Cache for Page M is transferred to the Page Buffer.
- 5 After the Ready state, Data for Page N + P1 is output from the Data Cache while the data of Page M is being programmed.


NM1282KSLAXAL


For X8:

- 6 Copy Page address (M + R1) is input and if the data needs to be changed, changed data is input.
- 7 After programming of page M is completed, Data Cache for Page M + R1 is transferred to the Page Buffer.
- 8 By the 15h command, the data in the Page Buffer is programmed to Page M + R1. Data for Page N + P2 is transferred to the Data cache.
- 9 The data in the Page Buffer is programmed to Page M + Rn 1. Data for Page N + Pn is transferred to the Data Cache.

For X8:

10 Copy Page address (M + Rn) is input and if the data needs to be changed, changed data is input.

11 By issuing the 10h command, the data in the Page Buffer is programmed to Page M + Rn.

(*1) Since the last page programming by the 10h command is initiated after the previous cache program, the tPROG here will be expected as the following,

tPROG = tPROG of the last page + tPROG of the previous page - (command input cycle + address input cycle + data output/input cycle time of the last page)

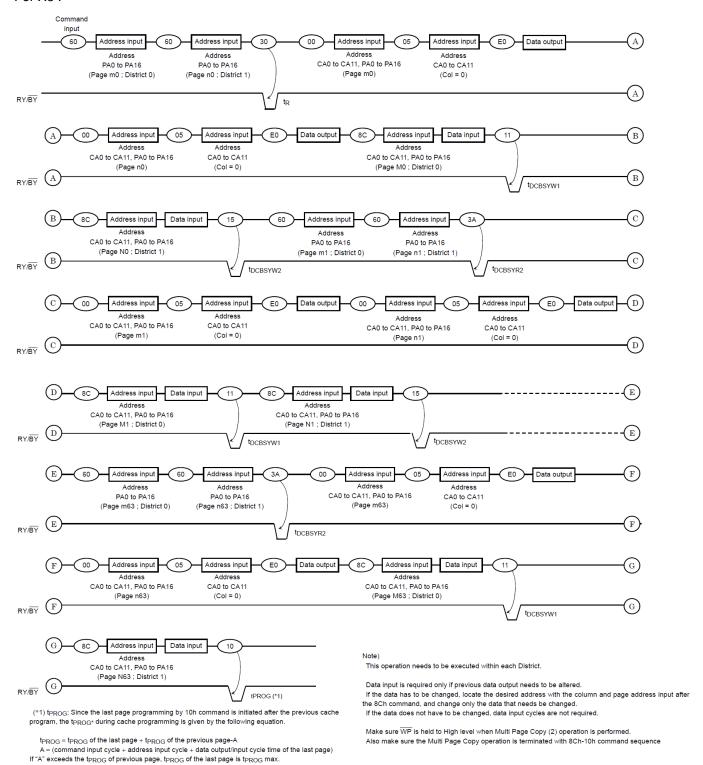
NOTE) This operation needs to be executed within District-0 or District-1.

Data input is required only if previous data output needs to be altered.

If the data has to be changed, locate the desired address with the column and page address input after the 8Ch command, and change only the data that needs be changed.

If the data does not have to be changed, data input cycles are not required.

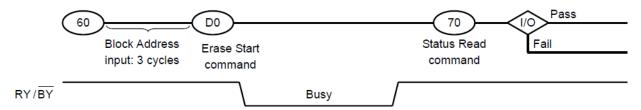
Make sure \overline{WP} is held to High level when Page Copy (2) operation is performed.


Also make sure the Page Copy operation is terminated with 8Ch-10h command sequence

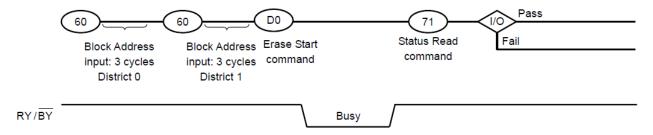
Mutil Page Copy (2)

NANYA NM1282KSLAXAL

By using Multi Page Copy (2), data in two pages can be copied to other pages after the data has been read out. When each block address changes (increments) this sequence has to be started from the beginning. Same page address (PA0 to PA5) within two districts has to be selected.


For X8:

Version 1.3 36 Nanya Technology Corp. All Rights Reserved. ©


Auto Block Erase

The Auto Block Erase operation starts on the rising edge of WE after the Erase Start command "D0h" which follows the Erase Setup command "60h". This two-cycle process for Erase operations acts as an extra layer of protection from accidental erasure of data due to external noise. The device automatically executes the Erase and Verify operations.

Multi Block Erase

The Multi Block Erase operation starts by selecting two block addresses before D0h command as in below diagram. The device automatically executes the Erase and Verify operations and the result can be monitored by checking the status by 71h status read command. For details on 71h status read command, refer to section "Multi Page Program with Data Cache".

Internal addressing in relation with the Districts

To use Multi Block Erase operation, the internal addressing should be considered in relation with the District.

- · The device consists from 2 Districts.
- Each District consists from 1024 erase blocks.
- · The allocation rule is follows.

District 0: Block 0, Block 2, Block 4, Block 6,..., Block 2046

District 1: Block 1, Block 3, Block 5, Block 7,..., Block 2047

Address input restriction for the Multi Block Erase

There are following restrictions in using Multi Block Erase

(Restriction)

Maximum one block should be selected from each District.

For example;

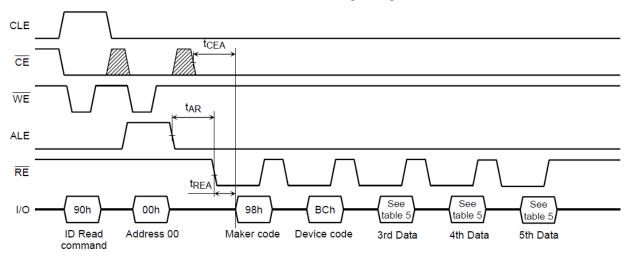
(60) [District 0] (60) [District 1] (D0)

(Acceptance)

There is no order limitation of the District for the address input.

For example, following operation is accepted;

(60) [District 1] (60) [District 0] (D0)


It requires no mutual address relation between the selected blocks from each District.

Make sure to terminate the operation with D0h command. If the operation needs to be terminated before D0h command input, input the FFh reset command to terminate the operation.

Version 1.338Nanya Technology Corp.06/2018All Rights Reserved. ©

ID Read

The device contains ID codes which can be used to identify the device type, the manufacturer, and features of the device. The ID codes can be read out under the following timing conditions:

ID Definition Table (X8)

	Description		1/06	1/05	I/O4	1/03	1/02	I/01	1/00	Hex Data
1 st Data	Maker Code		0	0	1	1	0	0	0	98н
2 nd Data	Device Code	1	0	1	0	1	0	1	0	AA_H
3 rd Data	Chip Number, Cell Type		0	0	1	0	0	0	0	90 _H
4 th Data	Page Size, Block Size, I/O Width	0	0	0	1	0	1	0	1	15н
5 th Data	Plane Number		1	1	1	0	1	1	0	76н

3rd ID Data

Item	Description	1/07	1/06	1/05	1/04	1/03	1/02	I/O1	1/00
	1							0	0
Internal Chip Number	2							0	1
	4							1	0
	8							1	1
	2 Level Cell					0	0		
Call Time	4 Level Cell					0	1		
Cell Type	8 Level Cell					1	0		
	16 Level Cell					1	1		
Reserved		1	0	0	1				

4th ID Data

Item	Description	I/07	I/O6	1/05	1/04	1/03	1/02	I/O1	1/00
	1 KB							0	0
Page Size	2 KB							0	1
(without redundant area)	4 KB							1	0
	8 KB							1	1
	64 KB			0	0				
Block Size	128 KB			0	1				
(without redundant area)	256 KB			1	0				
	512 KB			1	1				
I/O Width	X8		0						
I/O VVIGITI	X16		1						
Reserved		0				0	1		

5th ID Data

Item	Description	1/07	1/06	1/05	1/04	1/03	1/02	I/O1	1/00
	1 Plane					0	0		
Plane Number	2 Plane					0	1		
	4 Plane					1	0		
	8 Plane					1	1		
Reserved		0	1	1	1			1	0

NUA NM1282KSLAXAL

Status Read

The device automatically implements the execution and verification of the Program and Erase operations. The status Read function is used to monitor the Ready/Busy status of the device, determine the result (pass/fail) of a Program or Erase operation, and determine whether the device is in Protect mode. The device status is output via the I/O port using RE after a "70h" command input. The Status Read can also be used during a Read operation to find out the Ready/Busy status.

Status Register Definition for 70_H Command

1/0	Page Program	Block Erase	Read	Cache Read	Cache Program	Definition
1/0 0	Pass / Fail	Pass / Fail	Invalid Invalid		Pass / Fail	Chip Status1 Pass : 0 / Fail : 1
I/O 1	Invalid	Invalid	Invalid	Invalid	Pass / Fail	Chip Status2 Pass : 0 / Fail : 1
1/0 2	0	0	0	0	0	Not Used
1/03	0	0	0	0	0	Not Used
1/0 4	0	0	0	0	0	Not Used
1/0 5	Ready / Busy	Ready / Busy	Ready / Busy	Ready / Busy	Ready / Busy	Page Buffer Busy: 0 / Ready: 1
1/0 6	Ready / Busy	Ready / Busy	Ready / Busy	Ready / Busy	Ready / Busy	Data Cache Busy: 0 / Ready: 1
1/07	Write Protect	Write Protect	Write Protect	Write Protect	Write Protect	Write Prot Protected : 0 / Not Protected : 1

The Pass/Fail status on I/O0 and I/O1 is only valid during a Program/Erase operation when the device is in the NOTE Ready state.

Chip Status 1:

During a Auto Page Program or Auto Block Erase operation this bit indicates the pass/fail result.

During a Auto Page Programming with Data Cache operation, this bit shows the pass/fail results of the current page program operation, and therefore this bit is only valid when I/O5 shows the Ready state.

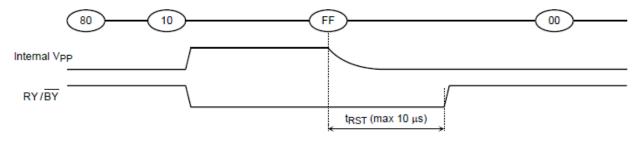
Chip Status 2:

This bit shows the pass/fail result of the previous page program operation during Auto Page Programming with Data Cache. This status is valid when I/O6 shows the Ready State.

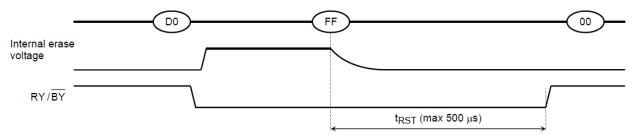
The status output on the I/O5 is the same as that of I/O6 if the command input just before the 70h is not 15h or 31h.

An application example with multiple devices is shown in the figure below.

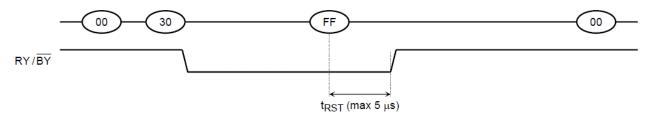
System Design Note: If the \overline{RY} / \overline{BY} pin signals from multiple devices are wired together as shown in the diagram, the Status Read function can be used to determine the status of each individual device.

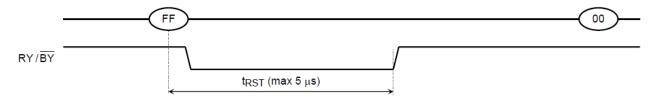

Reset

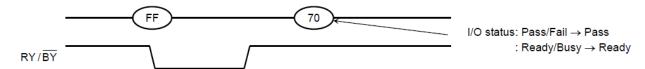
The Reset mode stops all operations. For example, in case of a Program or Erase operation, the internally generated voltage is discharged to 0 volt and the device enters the Wait state.

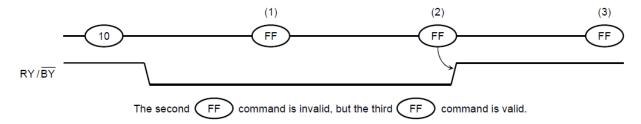

Reset during a Cache Program/Page Copy may not just stop the most recent page program but it may also stop the previous program to a page depending on when the FF reset is input.

The response to a "FFh" Reset command input during the various device operations is as follows:


When a Reset (FFh) command is input during programming


When a Reset (FFh) command is input during erasing

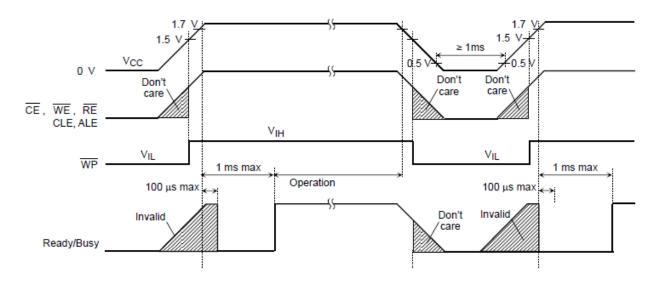

When a Reset (FFh) command is input during Read operation


When a Reset (FFh) command is input during Ready

When a Status Read command (70h) is input after a Reset

When two or more Reset commands are input in succession

APPLICATION NOTES AND COMMENTS


(1)Power-on/off sequence

The timing sequence shown in the figure below is necessary for the power-on/off sequence.

The device internal initialization starts after the power supply reaches an appropriate level in the power on sequence.

During the initialization the device Ready/Busy signal indicates the Busy state as shown in the figure below. In this time period, the acceptable commands are FFh or 70h.

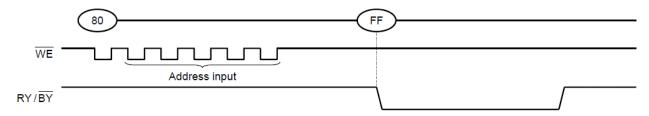
The WP signal is useful for protecting against data corruption at power-on/off.

(2) Do not turn off the power before write/erase operation is complete. Avoid using the device when the battery is low. Power shortage and/or power failure before write/erase operation is complete will cause loss of data and/or damage to data.

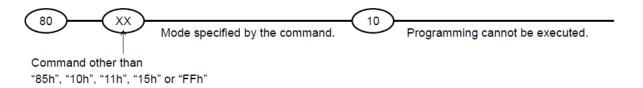
(3)Power-on Reset

The following sequence is necessary because some input signals may not be stable at power-on.

(4)Prohibition of unspecified commands

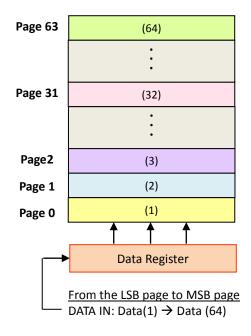

The operation commands are listed in Logic Table. Input of a command other than those specified in Logic Table is prohibited. Stored data may be corrupted if an unknown command is entered during the command cycle.

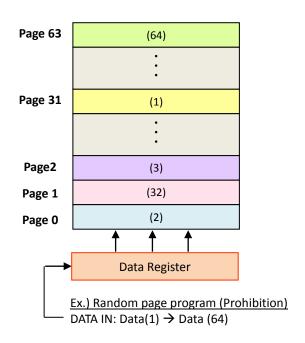
(5)Restriction of commands while in the Busy state

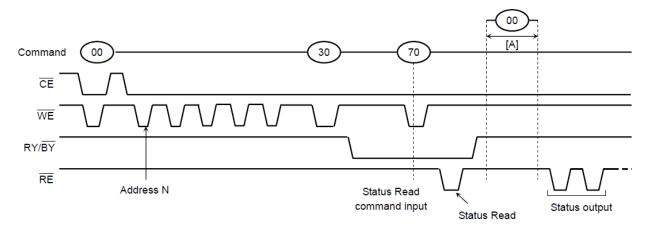

During the Busy state, do not input any command except 70h(71h) and FFh.

(6)Acceptable commands after Serial Input command "80h"

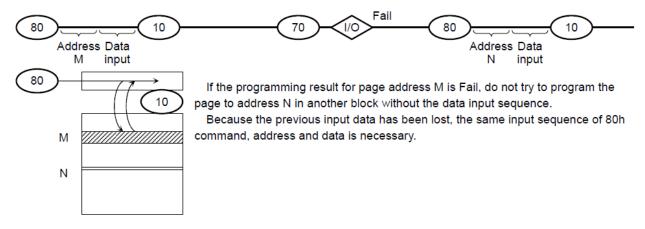
Once the Serial Input command "80h" has been input, do not input any command other than the Column Address Change in Serial Data Input command "85h", Auto Program command "10h", Multi Page Program command "11h", Auto Program with Data Cache Command "15h", or the Reset command "FFh".



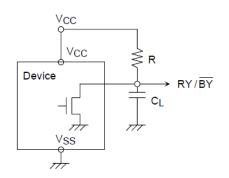

If a command other than "85h", "10h", "11h", "15h" or "FFh" is input, the Program operation is not performed and the device operation is set to the mode which the input command specifies.


(7)Addressing for Program Operation

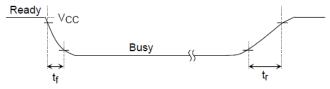
Within a block, the pages must be programmed consecutively from the LSB (least significant bit) page of the block to MSB (most significant bit) page of the block. Random page address programming is prohibited.

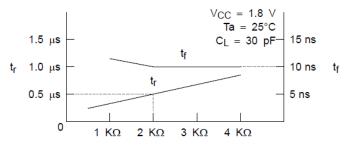


(8)Status Read during a Read operation


The device status can be read out by inputting the Status Read command "70h" in Read mode. Once the device has been set to Status Read mode by a "70h" command, the device will not return to Read mode unless the Read command "00h" is inputted during [A]. If the Read command "00h" is inputted during [A], Status Read mode is reset, and the device returns to Read mode. In this case, data output starts automatically from address N and address input is unnecessary

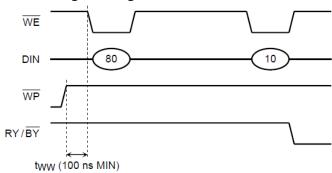
(9) Auto programming failure

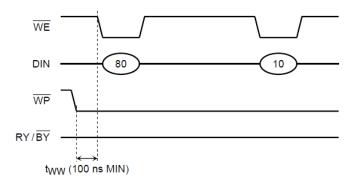



(10)RY / \overline{BY} : termination for the Ready/Busy pin (RY / \overline{BY})

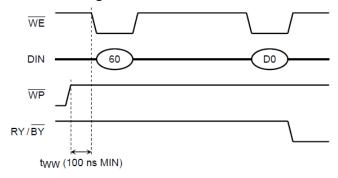
A pull-up resistor needs to be used for termination because the RY / $\overline{\text{BY}}$ buffer consists of an open drain circuit.

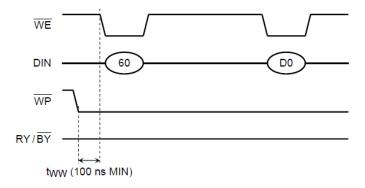
This data may vary from device to device. We recommend that you use this data as a reference when selecting a resistor value.



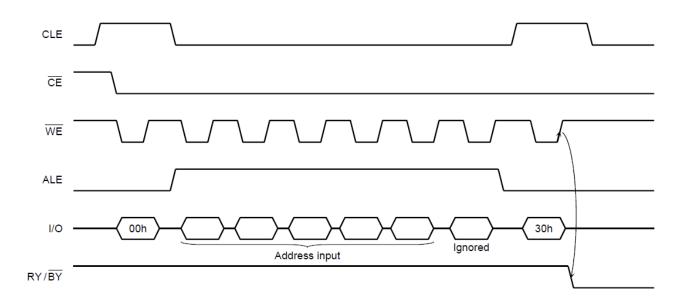

(11)Note regarding the $\overline{\text{WP}}$ signal

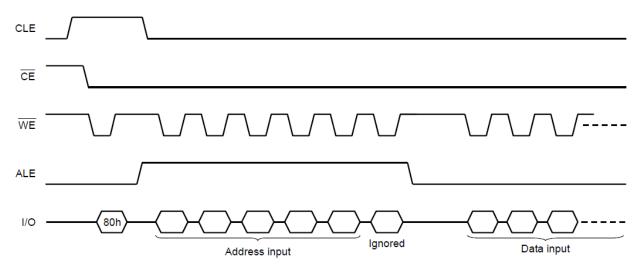
The Erase and Program operations are automatically reset when WP goes Low. The operations are enabled and disabled as follows:


Enable Programming


Disable Programming

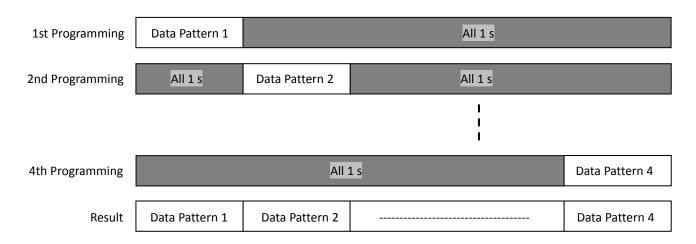
Enable Erasing


Disable Erasing

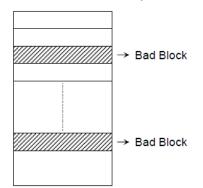

(12)When six address cycles are input

Although the device may read in a sixth address, it is ignored inside the chip.

Read operation



Program operation


(13)Several programming cycles on the same page (Partial Page Program)

Each segment can be programmed individually as follows:

(14)Invalid blocks (bad blocks)

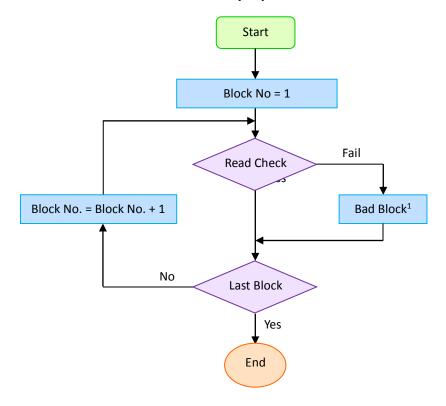
The device occasionally contains unusable blocks. Therefore, the following issues must be recognized:

Please do not perform an erase operation to bad blocks. It may be impossible to recover the bad block information if the information is erased.

Check if the device has any bad blocks after installation into the system.

Refer to the test flow for bad block detection. Bad blocks which are detected by the test flow must be managed as unusable blocks by the system.

A bad block does not affect the performance of good blocks because it is isolated from the bit lines by select gates.


The number of valid blocks over the device lifetime is as follows:

Symbol	Min	Тур.	Max	Unit
Valid(Good) Block Number	2,008	_	2,048	Blocks

Bad Block Test Flow

Regarding invalid blocks, bad block mark is in whole pages.

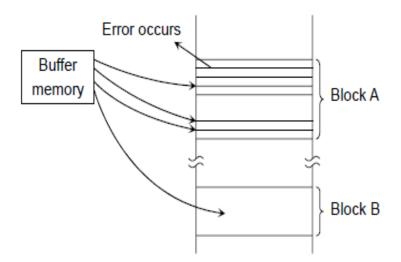
Please read one column of any page in each block. It makes sure that every invalid block has Majority "0" data at this column. If the data of the column is Majority "0", define the block as a bad block.

Note1: No erase operation is allowed to detected bad blocks.

(15) Failure phenomena for Program and Erase Operations

The device may fail during a Program or Erase operation.

The following possible failure modes should be considered when implementing a highly reliable system.


Failure Mode		Detection and Countermeasure Sequence
Block	Erase Failure	Read Status after Erase → Block Replacement
Page	Programming Failure	Read Status after Program → Block Replacement
Read	Bit Error	ECC Correction / Block Refresh

NOTE 1 ECC: Error Correction Code. 8 bit correction per 512 Bytes is necessary.

Block Replacement

Program

When an error happens in Block A, try to reprogram the data into another Block (Block B) by loading from an external buffer. Then, prevent further system accesses to Block A (by creating a bad block table or by using another appropriate scheme).

Erase

When an error occurs during an Erase operation, prevent future accesses to this bad block (again by creating a table within the system or by using another appropriate scheme).

(16) The number of valid blocks is on the basis of single plane operations, and this may be decreased with two plane operations.

(17) Reliability Guidance

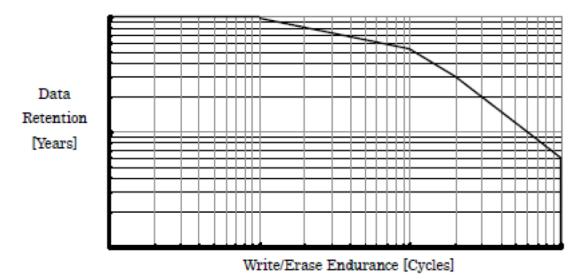
This reliability guidance is intended to notify some guidance related to using NAND flash with 8bit ECC for each 512 bytes. For detailed reliability data, please refer to TOSHIBA's reliability note.

Although random bit errors may occur during use, it does not necessarily mean that a block is bad.

Generally, a block should be marked as bad when a program status failure or erase status failure is detected.

The other failure modes may be recovered by a block erase.

ECC treatment for read data is mandatory due to the following Data Retention and Read Disturb failures.

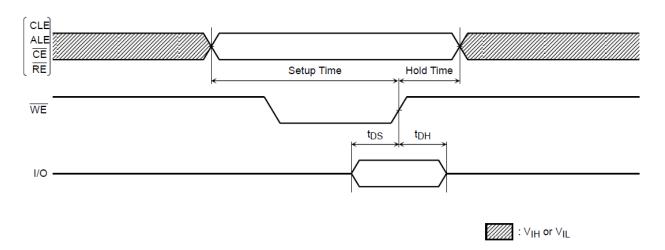

■ Write/Erase Endurance

Write/Erase endurance failures may occur in a cell, page, or block, and are detected by doing a status read after either an auto program or auto block erase operation. The cumulative bad block count will increase along with the number of write/erase cycles.

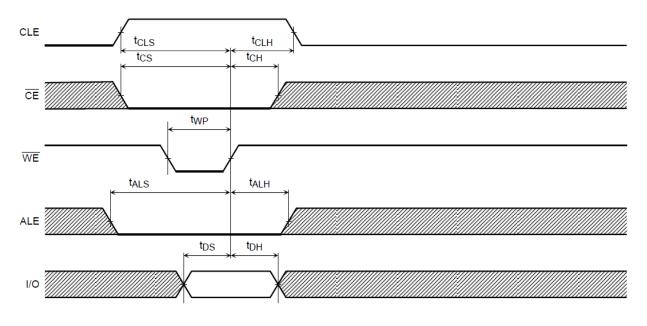
■ Data Retention

The data in memory may change after a certain amount of storage time. This is due to charge loss or charge gain. After block erasure and reprogramming, the block may become usable again.

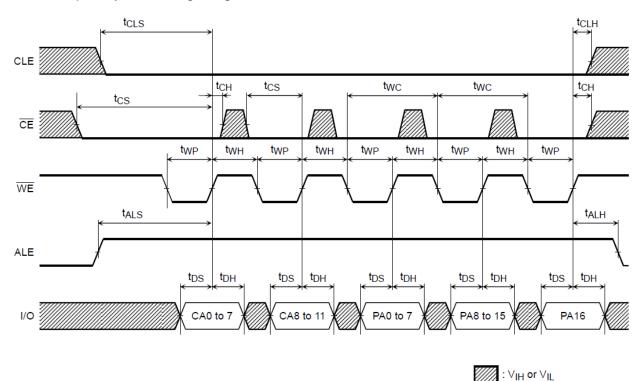
Here is the combined characteristics image of Write/Erase Endurance and Data Retention.



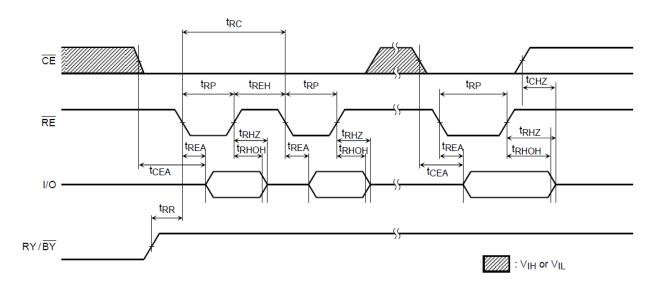
■ Read Disturb

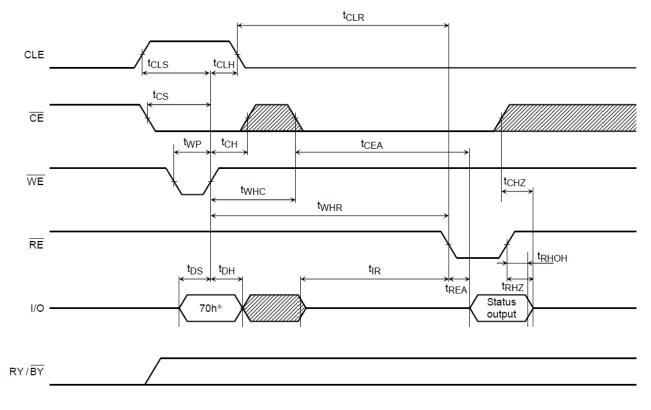

A read operation may disturb the data in memory. The data may change due to charge gain. Usually, bit errors occur on other pages in the block, not the page being read. After a large number of read cycles (between block erases), a tiny charge may build up and can cause a cell to be soft programmed to another state. After block erasure and reprogramming, the block may become usable again.

TIMING DIAGRAMS

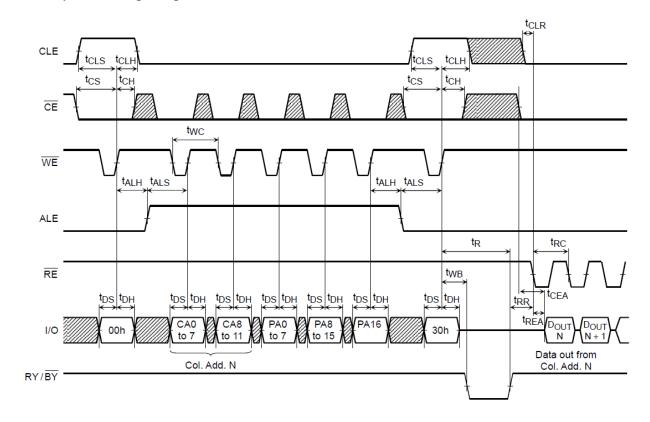

Latch Timing Diagram for Command/Address/Data

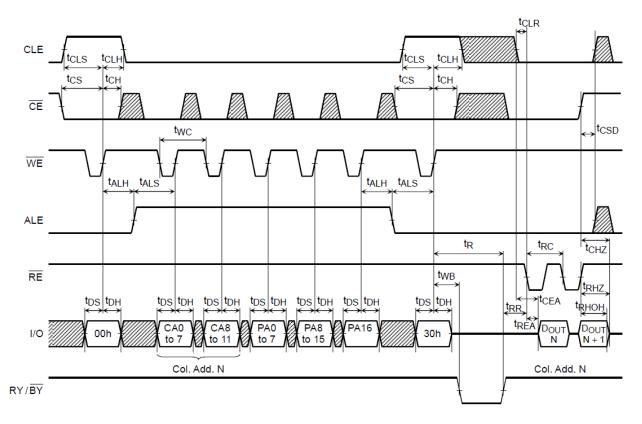

Command Input Cycle Timing Diagram


Address Input Cycle Timing Diagram

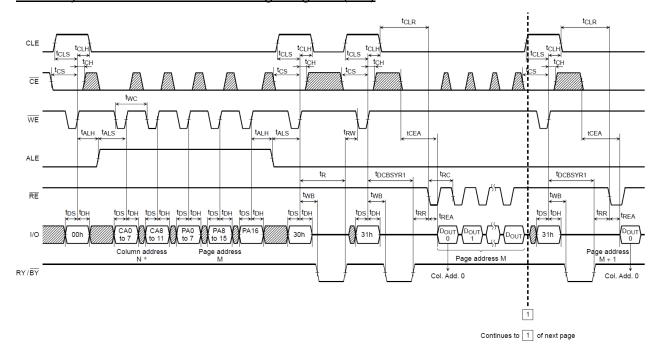

Data Input Cycle Timing Diagram

Serial Read Cycle Timing Diagram

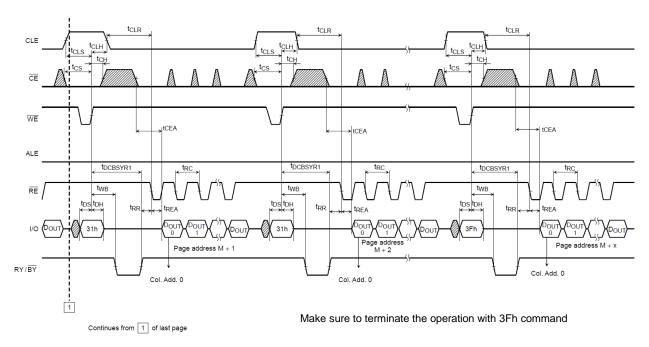

Status Read Cycle Timing Diagram


: VIH or VIL

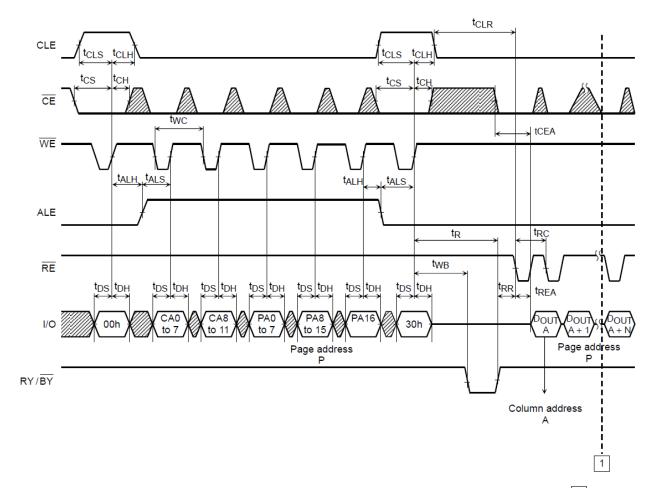
*: 70h represents the hexadecimal number


Read Cycle Timing Diagram

Read Cycle Timing Diagram: When Interrupted by CE

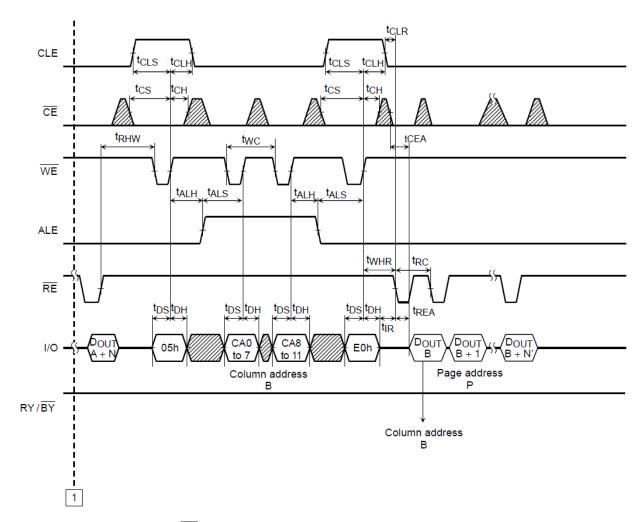


Read Cycle with Data Cache Timing Diagram (1/2)

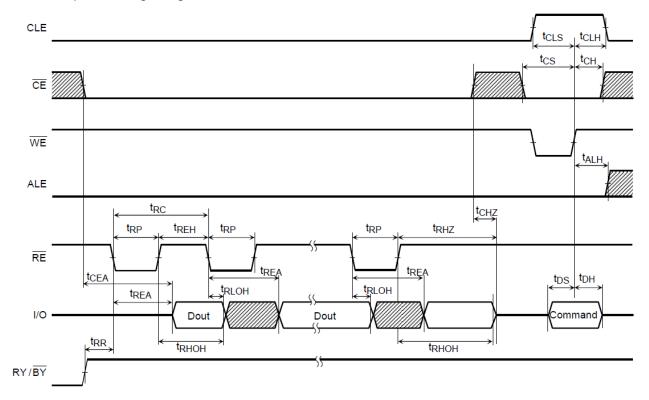


*: The column address will be reset to 0 by the 31h command input

Read Cycle with Data Cache Timing Diagram (2/2)



Column Address Change in Read Cycle Timing Diagram (1/2)

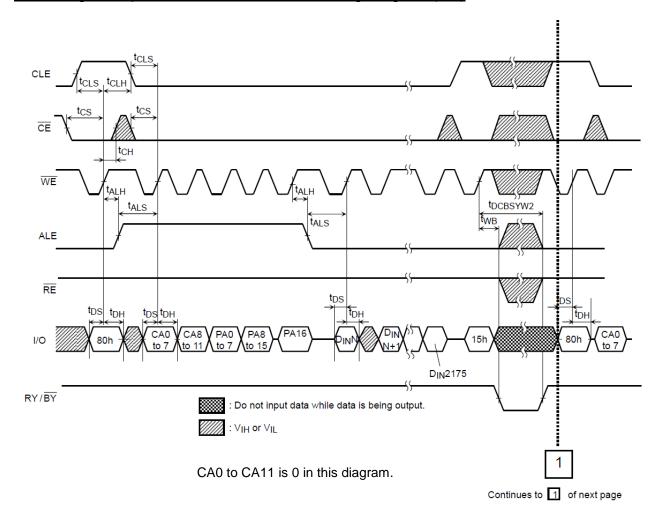

Continues from 1 of next page

Column Address Change in Read Cycle Timing Diagram (2/2)

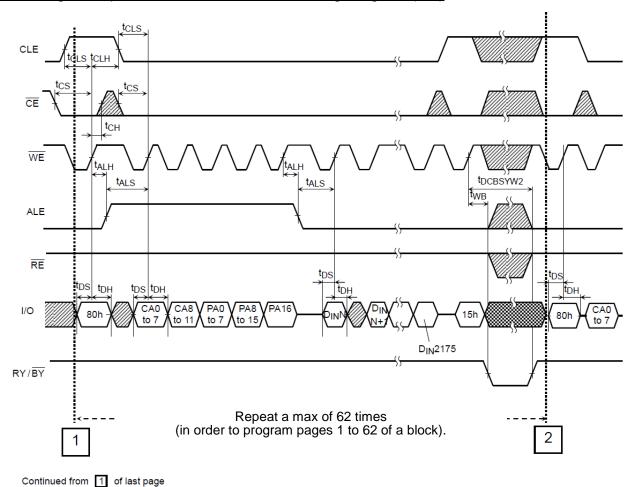
Continues from 1 of last page

Data Output Timing Diagram

Auto-Program Operation Timing Diagram



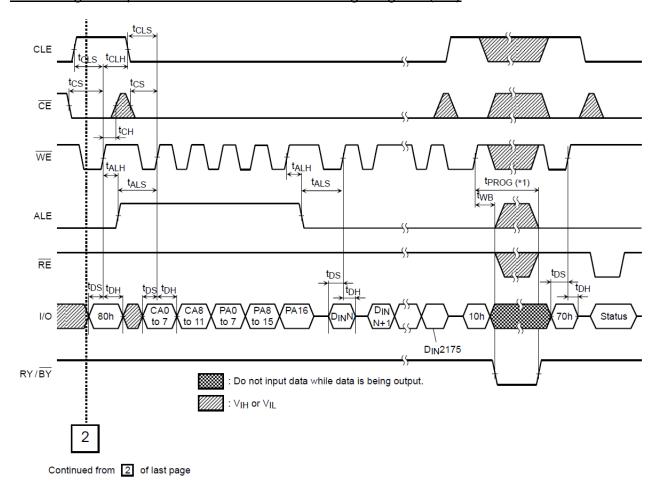
: Do not input data while data is being output.


: V_{IH} or V_{IL}

*: M: up to 2175 (byte input data for x8 device)

Auto-Program Operation with Data Cache Timing Diagram (1/3)

Auto-Program Operation with Data Cache Timing Diagram (2/3)


led from Ti or last page

: Do not input data while data is being output.

: V_{IH} or V_{IL}

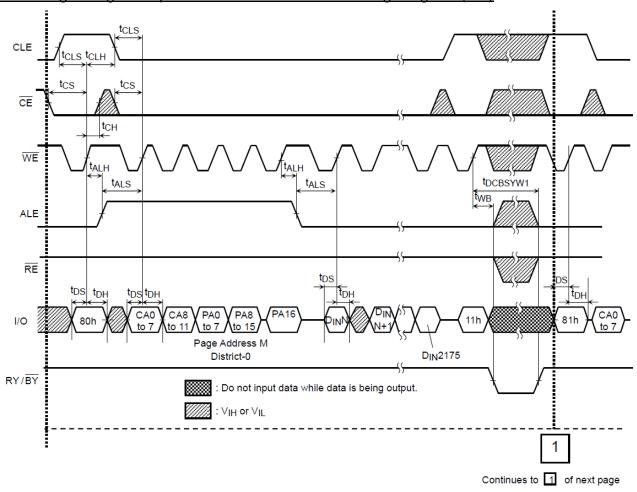
NANUA NM1282KSLAXAL

Auto-Program Operation with Data Cache Timing Diagram (3/3)

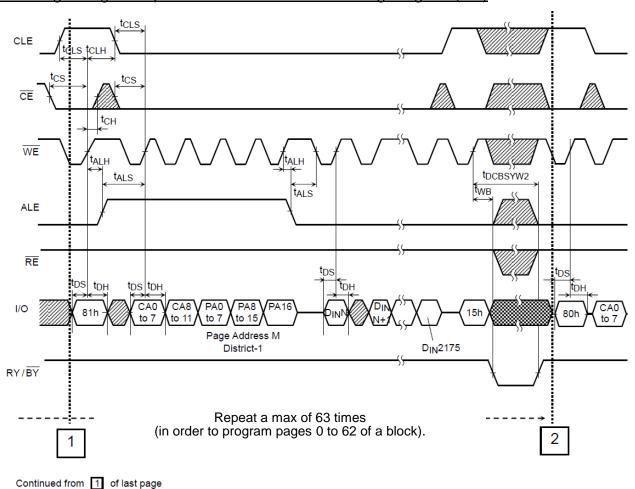
(*1)

tPROG: Since the last page programming by 10h command is initiated after the previous cache program, the tPROG during cache programming is given by the following equation.

tPROG = tPROG of the last page + tPROG of the previous page - A


A = (command input cycle + address input cycle + data input cycle time of the last page)

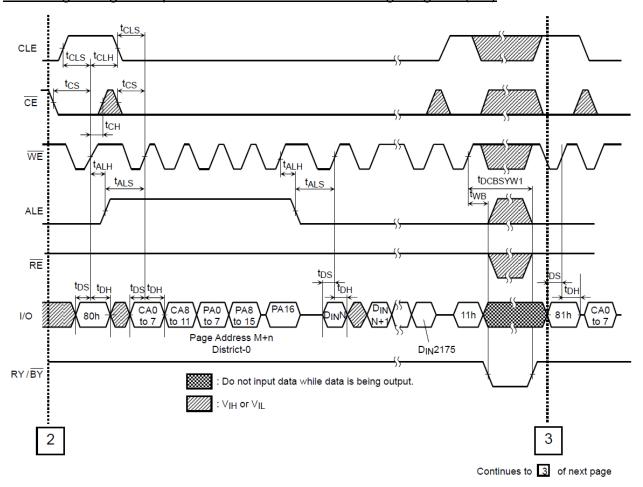
If "A" exceeds the tPROG of previous page, tPROG of the last page is tPROG max.


NOTE: Make sure to terminate the operation with 80h-10h- command sequence.

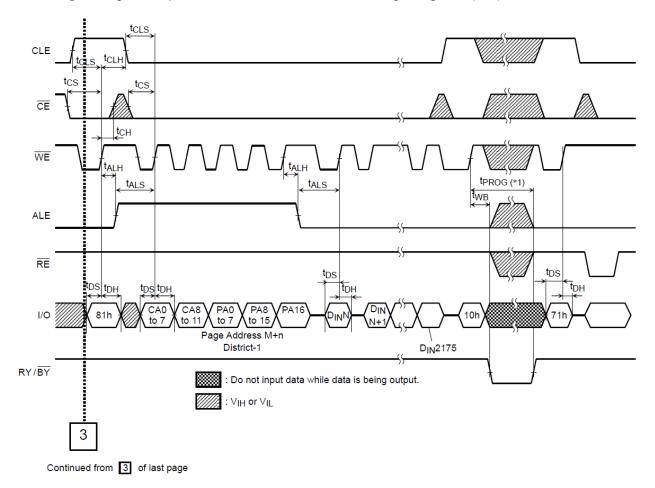
If the operation is terminated by 80h-15h command sequence, monitor I/O 6 (Ready / Busy) by issuing Status Read command (70h) and make sure the previous page program operation is completed. If the page program operation is completed issue FFh reset before next operation.

Multi-Page Program Operation with Data Cache Timing Diagram (1/4)

Multi-Page Program Operation with Data Cache Timing Diagram (2/4)



. .


: Do not input data while data is being output.

: V_{IH} or V_{IL}

Multi-Page Program Operation with Data Cache Timing Diagram (3/4)

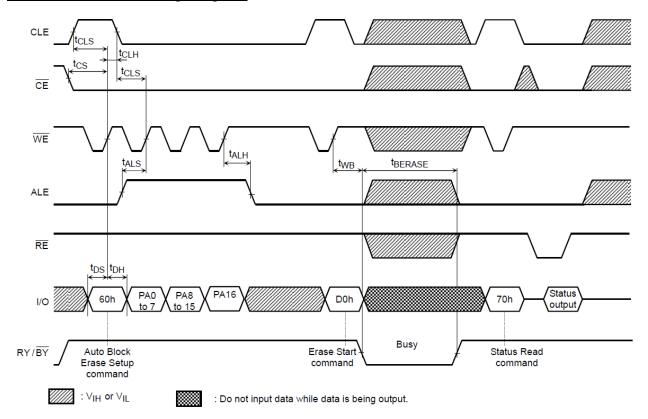
Multi-Page Program Operation with Data Cache Timing Diagram (4/4)

(*1)

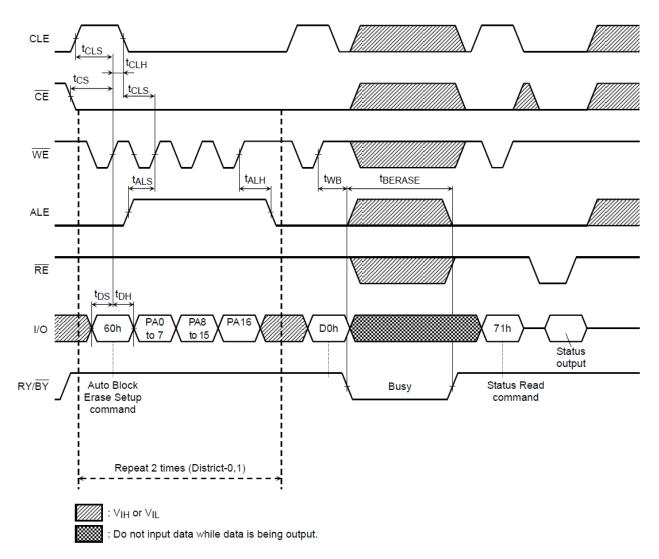
tPROG: Since the last page programming by 10h command is initiated after the previous cache program, the tPROG during cache programming is given by the following equation.

tPROG = tPROG of the last page + tPROG of the previous page - A

A = (command input cycle + address input cycle + data input cycle time of the last page)


If "A" exceeds the tPROG of previous page, tPROG of the last page is tPROG max.

NOTE: Make sure to terminate the operation with 81h-10h- command sequence.


If the operation is terminated by 81h-15h command sequence, monitor I/O 6 (Ready / Busy) by issuing Status

Read command (70h) and make sure the previous page program operation is completed. If the page program operation is completed issue FFh reset before next operation.

Auto Block Erase Timing Diagram

Multi Block Erase Timing Diagram

ID Read Operation Timing Diagram

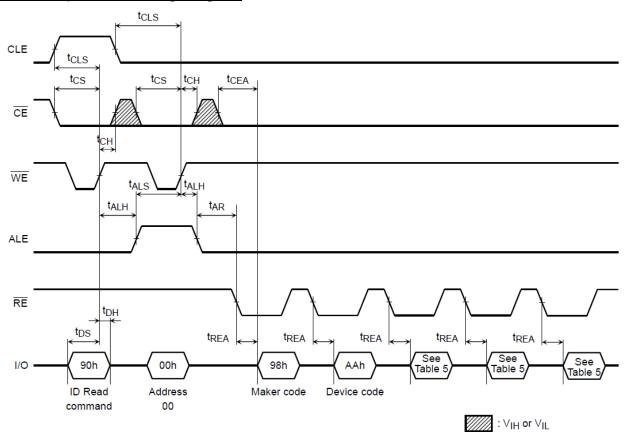


Table 5: ID Definition Table

2Gb(X32) LPDDR2

NTC Proprietary

Level: Property

LPDDR2 Descriptions

LPDDR2-S4 uses the double data rate architecture on the Command/Address (CA) bus to reduce the number of input pins in the system. The 10-bit CA bus contains command, address, and Bank/Row Buffer information. Each command uses one clock cycle, during which command information is transferred on both the positive and negative edge of the clock.

To achieve high-speed operation, our LPDDR2-S4 SDRAM uses the double data rate architecture and adopt 4n-prefetch interface designed to transfer two data per clock cycle at the I/O pins. A single read or write access for the LPDDR2-S4 effectively consists of a single 4n-bit wide, one clock cycle data transfer at the internal SDRAM core and four corresponding n-bit wide, one-half-clock-cycle data transfer at the I/O pins. Read and write accesses to the LPDDR2-S4 are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence.

For LPDDR2-S4 devices, accesses begin with the registration of an Active command, which is then followed by a Read or Write command. The address and BA bits registered coincident with the Active command are used to select the row and the Bank to be accessed. The address bits registered coincident with the Read or Write command are used to select the Bank and the starting column location for the burst access.

Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Units
V _{DD1}	Voltage on V _{DD1} pin relative to Vss	-0.4	2.3	V
V_{DD2}	Voltage on V _{DD2} pin relative to Vss	-0.4	1.6	V
V _{DDCA}	Voltage on V _{DDCA} pin relative to Vss	-0.4	1.6	V
V _{DDQ}	Voltage on V _{DDQ} pin relative to Vss	-0.4	1.6	V
Vin, Vout	Voltage on any pin relative to Vss	-0.4	1.6	V
Tstg	Storage Temperature (plastic)	-55	+125	°C

- 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For measurement conditions, refer to the JESD51-2 standard.
- 3. VDD2 and VDDQ / VDDCA must be within 200mV of each other at all times.
- 4. Voltage on any I/O may not exceed voltage on VDDQ; Voltage on any CA input may not exceed voltage on VDDCA.
- 5. VREF must always be less than all other supply voltages.
- 6. The voltage difference between any VSS pins may not exceed 100mV.

AC/DC Operating Conditions

DC Operating Conditions

Symbol	Parameter	Min	Typical	Max	Unit	Notes
Power Sup	ply				•	
V _{DD1}	Core Supply voltage 1	1.70	1.80	1.95	V	
V_{DD2}	Core Supply voltage 2	1.14	1.20	1.30	V	
V _{DDCA}	Input Supply Voltage (Command / Address)	1.14	1.20	1.30	V	
V_{DDQ}	I/O Supply voltage (DQ)	1.14	1.20	1.30	V	
Leakage cı	ırrent					
	Input leakage current					
II	Any input $0 \le V_{IN} \le V_{DDQ} / V_{DDCA}$,	-2	-	2	uA	1
	All other pins not under test = 0V					
	V _{REF} leakage current; V _{REFDQ} = V _{DDQ} /2 or					
I_{VREF}	$V_{REFCA} = V_{DDCA}/2$ (all other pins not under test	-1	-	1	uA	1
	= 0V)					

Notes:

1. The minimum limit requirement is for testing purposes. The leakage current on VREFCA and VREFDQ pins should be minimal.

Although DM is for input only, the DM leakage shall match the DQ and DQS, DQS output leakage specification.

AC/DC Input Measurement Level

AC and DC Logic Levels for Single-Ended Signals

CA inputs	(Address and Command) and \overline{C}	S inputs			
Comple el	Parameter	LPDDR	2 1066	Unit	Notes
Symbol	Parameter	Min	Max	Unit	Notes
V _{IHCA(AC)}	AC Input logic HIGH voltage	V _{REFCA} + 220 mV	-	mV	1,3
V _{IHCA(DC)}	DC Input logic HIGH voltage	V _{REFCA} + 130 mV	V _{DDCA}	mV	1
V _{ILCA(AC)}	AC Input logic LOW voltage	-	V _{REFCA} – 220 mV	mV	1,3
VILCA(DC)	DC Input logic LOW voltage	V _{SS}	V _{REFCA} – 130 mV	mV	1
V _{REFCA(DC)}	Reference voltage for CA and $\overline{\text{CS}}$ inputs	0.49 x V _{DDCA}	0.51 x V _{DDCA}	V	4,5
Data input	ts (DQ & DM)				
VIHDQ(AC)	AC Input logic HIGH voltage	VREFDQ + 220 mV	-	mV	2,3
V _{IHDQ(DC)}	DC Input logic HIGH voltage	VrefDQ + 130 mV	VDDQ	mV	1
VILDQ(AC)	AC Input logic LOW voltage	-	V _{REFDQ} – 220 mV	mV	2,3
V _{ILDQ(DC)}	DC Input logic LOW voltage	Vss	V _{REFDQ} – 130 mV	mV	1
V _{REFDQ(DC)}	Reference voltage for DQ and DM inputs	0.49 x V _{DDQ}	0.51 x V _{DDQ}	٧	4,5
Clock ena	ble inputs (CKE)		•	,	
Symbol	Parameter	Min	Max	Unit	Notes
V _{IHCKE} (AC)	CKE AC Input HIGH voltage	0.8 * V _{DDCA}	-	V	3
VILCKE (AC)	CKE AC Input LOW voltage	-	0.2 * V _{DDCA}	V	3

NOTE 1 For CA and $\overline{\text{CS}}$ input only pins. Vref = VrefCA(DC).

NOTE 2 For DQ input only pins. Vref = VrefDQ(DC).

NOTE 3 See "Overshoot and Undershoot Specifications"

NOTE 4 The ac peak noise on VRefCA may not allow VRefCA to deviate from VRefCA(DC) by more than +/-1% VDDCA (for reference: approx. +/- 12 mV).

NOTE 5 For reference: approx. VDDCA/2 +/- 12 mV.

All Rights Reserved. ©

NM1282KSLAXAL

Differential AC and DC Input Levels

Differential	Differential Inputs logical levels (CK, CK - V _{REF} = V _{REFCA(DC)} ; DQS, DQS: V _{REF} = V _{REFDQ(DC)})						
Symbol	Parameter	LPDDR	2 1066	Unit			
Syllibol	Farameter	Min	Max	Onit			
VIHdiff(AC)	Differential input voltage HIGH AC	2 x (V _{IH(AC)} -V _{REF})	Note 3	V			
V _{ILdiff(AC)}	Differential input voltage LOW AC	Note 3	2 x (V _{REF} -V _{IL(AC)})	V			
V _{IHdiff(DC)}	Differential input voltage HIGH DC	2 x (V _{IH(DC)} -V _{REF})	Note 3	V			
V _{ILdiff(DC)}	Differential input voltage LOW DC	Note 3	2 x (V _{REF} -V _{IL(DC)})	V			

Notes:

- 1. Used to define a differential signal slew-rate. For CK $\overline{\text{CK}}$ use VIH/VIL(dc) of CA and VREFCA; for DQS $\overline{\text{DQS}}$, use VIH/VIL(dc) of DQs and VREFDQ; if a reduced dc-high or dc-low level is used for a signal group, then the reduced level applies also here.
- 2. For CK and $\overline{\text{CK}}$, use $V_{\text{IH/VIL(AC)}}$ of CA and V_{REFCA} ; for DQS and $\overline{\text{DQS}}$, use $V_{\text{IH/VIL(AC)}}$ of DQ and V_{REFDQ} . If a reduced AC HIGH or AC LOW is used for a signal group, the reduced voltage level also applies.
- 3. These values are not defined, however the single-ended signals CK, CK, DQS, and DQS must be within the respective limits (V_{IH(DC)}max, V_{IL(DC)}min) for single-ended signals and must comply with the specified limitations for overshoot and undershoot.

CK, CK and DQS, DQS Time Requirement before Ring back (t_{DVAC})

Slew Rate	t _{DVAC} (ps) at
(V/ns)	V _{IH} /V _{ILdiff(AC)} = 440 mV
(17110)	Min
>4.0	175
4.0	170
3.0	167
2.0	163
1.8	162
1.6	161
1.4	159
1.2	155
1.0	150
<1.0	150

Single-Ended Levels for CK, CK, DQS, DQS

Cumbal	Parameter	LPDDR2 1066		
Symbol	Parameter	Min	Max	Unit
\/	Single-ended HIGH level for strobes	(V _{DDQ} /2) + 0.22	Note 3	V
Vseh(AC)	Single-ended HIGH level for CK, CK	(V _{DDCA} /2) + 0.22	Note 3	V
V	Single-ended LOW level for strobes	Note 3	(V _{DDQ} /2) - 0.22	V
Vsel(ac)	Single-ended LOW level for CK, CK	Note 3	(V _{DDCA} /2) - 0.22	V

Notes:

- For CK and \overline{CK} , use VSEH/VSEL(AC) of CA; for strobes (DQS[3:0] and \overline{DQS} [3:0]) use VIH/VIL(AC) of DQ.
- VIH(AC) and VIL(AC) for DQ are based on VREFDQ; VSEH(AC) and VSEL(AC) for CA are based on VREFCA. If a reduced AC HIGH or AC LOW is used for a signal group, the reduced level applies.
- 3. These values are not defined, however the single-ended signals CK, CK, DQS0, DQS0, DQS1, DQS1, DQS2, DQS2, DQS3, DQS3 must be within the respective limits (VIH(DC)max, VIL(DC)min) for single-ended signals, and must comply with the specified limitations for overshoot and undershoot.

Cross-Point Voltage for Differential Input Signals (CK, CK, DQS, DQS)

Symbol	bol Parameter –		2 1066	Unit
Symbol	r ai ailletei	Min	Max	Oille
VIXCA(AC)	Differential input cross-point voltage relative to VDDCA/2 for CK and $\overline{\text{CK}}$	-120	+120	mV
V _{IXDQ(AC)}	Differential input cross-point voltage relative to VDDQ/2 for DQS and DQS	-120	+120	mV

- 1. The typical value of VIX(AC) is expected to be about 0.5 × VDD of the transmitting device, and it is expected to track variations in VDD. VIX(AC) indicates the voltage at which differential input signals must cross.
- 2. For CK and \overline{CK} , VREF = VREFCA(DC). For DQS and \overline{DQS} , VREF = VREFDQ(DC).

Slew Rate Definitions for Single-Ended Input Signals

Refer to single-ended slew rate definition for address, command and data signals respectively.

Slew Rate Definitions for Differential Input Signals

Description	Defined by	Measured		
Description	Defined by	From	То	
Differential input slew rate for rising edge (CK, $\overline{\text{CK}}$ and DQS, $\overline{\text{DQS}}$)	[VIHdiffmin – VILdiffmax] / Δ TRdiff	VILdiffmax	VIHdiffmin	
Differential input slew rate for falling edge (CK, $\overline{\text{CK}}$ and DQS, $\overline{\text{DQS}}$)	[VIHdiffmin – VILdiffmax] / Δ TFdiff	VIHdiffmin	VILdiffmax	

Notes:

1. The differential signals (CK, $\overline{\text{CK}}$ and DQS, $\overline{\text{DQS}}$) must be linear between these thresholds.

AC/DC Output Measurement Level

Single-Ended AC and DC Output Levels

Symbol	Parameter		LPDDR2 1066	Unit	Notes
VOH(AC)	AC output HIGH measurement level (for output slew rate)		VREF + 0.12	V	
VOL(AC)	AC output LOW measurement level (for output slew rate)		VREF – 0.12	V	
Voh(dc)	DC output HIGH measurement level (for I-V curve linearity	t HIGH measurement level (for I-V curve linearity)		V	1
Vol(DC)	DC output LOW measurement level (for I-V curve linearity)		0.1 x VDDQ	V	2
	Output leakage current (DQ, DM, DQS, DQS)		-5	uA	
loz	(DQ, DQS, \overline{DQS} are disabled; $0V \le VOUT \le VDDQ$)	Max	5	uA	
NAN Assessed	Delta output impedance between pull-up and pull-down		-15	%	
MMpupd	for DQ/DM	Max	15	%	

Notes:

1. $I_{OH} = -0.1 \text{mA}$

2. I_{OL} = 0.1mA

Differential AC and DC Output Levels

Parameter	LPDDR2 1066	Unit	Notes
AC differential output HIGH measurement level (for output SR)	+ 0.20 x VDDQ	V	1
AC differential output LOW measurement level (for output SR)	- 0.20 x VDDQ	V	2
	AC differential output HIGH measurement level (for output SR)	AC differential output HIGH measurement level (for output SR) + 0.20 x VDDQ	AC differential output HIGH measurement level (for output SR) + 0.20 x VDDQ V

Notes:

1. $I_{OH} = -0.1 \text{mA}$

2. $I_{OL} = 0.1 mA$

Single Ended Output Slew Rate

With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC) for single ended signals as shown below.

Single-Ended Output Slew Rate Definition

Decerintian	Defined by	Measured		
Description	Defined by From		То	
Single-ended output slew rate for rising edge	[VOH(AC) - VOL(AC)] / Δ TRSE	VOL(AC)	VOH(AC)	
Single-ended output slew rate for falling edge	[VOH(AC) - VOL(AC)] / ATFSE	VOH(AC)	Vol(AC)	

Notes:

Output slew rate is verified by design and characterization, and may not be subject to production testing.

Single-Ended Output Slew Rate

Symbol	Parameter	LPDD	R2 1066	Unit
Cymbol	i diametei	Min Max		Oilit
SRQse	Single-ended output slew rate (output impedance = $40 \Omega \pm 30\%$)	1.5	3.5	V/ns
SRQse	Single-ended output slew rate (output impedance = $60 \Omega \pm 30\%$)	1.0	2.5	V/ns
	Output slew-rate-matching ratio (pull-up to pull-down)	0.7	1.4	

Definitions:

SR = slew rate, Q = query output (similar to DQ = data-in, query-output), se = single-ended signals

NOTE 1 Measured with output reference load.

NOTE 2 The ratio of pull-up to pull-down slew rate is specified for the same temperature and voltage, over the entire temperature and voltage range. For a given output, it represents the maximum difference between pull-up and pull-down drivers due to process variation.

NOTE 3 The output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC).

NOTE 4 Slew rates are measured under normal SSO conditions, with 1/2 of DQ signals per data byte driving logic-high and 1/2 of DQ signals per data byte driving logic-low.

Differential Output Slew Rate

With the reference load for timing measurements, the output slew rate for falling and rising edges is defined and measured between Voldiff(AC) and Vohdiff(AC) for differential signals as shown below.

Differential Output Slew Rate Definition

Deceriation	Defined by	Meas	sured
Description	Defined by	From	То
Differential output slew rate for rising edge	$[VOHdiff(AC) - VOLdiff(AC)] \ / \ \Delta TRdiff$	VOLdiff(AC)	VOHdiff(AC)
Differential output slew rate for falling edge	$[VOHdiff(AC) - VOLdiff(AC)] / \Delta TFdiff$	VOHdiff(AC)	VOLdiff(AC)

Notes:

Output slew rate is verified by design and characterization, and may not be subject to production testing.

Differential Output Slew Rate

Symbol	Parameter	LPDD	R2 1066	Unit
Syllibol	i didilicici	Min	Min Max	Offic
SRQdiff	Differential output slew rate (output impedance = $40 \Omega \pm 30\%$)	3.0	7.0	V/ns
SRQdiff	Differential output slew rate (output impedance = $60 \Omega \pm 30\%$)	2.0	5.0	V/ns

Definitions:

SR = slew rate, Q = query output (similar to DQ = data-in, query-output), diff = differential signals

NOTE 1 Measured with output reference load.

NOTE 2 The output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC).

NOTE 3 Slew rates are measured under normal SSO conditions, with 1/2 of DQ signals per data byte driving logic-high and 1/2 of DQ signals per data byte driving logic-low.

AC Overshoot/Undershoot Specification

Parameter		1066	Unit
Maximum peak amplitude provided for overshoot area	Max	0.35	V
Maximum peak amplitude provided for undershoot area	Max	0.35	V
Maximum area above VDD	Max	0.15	V-ns
Maximum area below VSS	Max	0.15	V-ns

- 1. VDD stands for VDDCA for CA[9:0], CK, $\overline{\text{CK}}$, $\overline{\text{CS}}$, and CKE. VDD stands for VDDQ for DQ, DM, DQS, and $\overline{\text{DQS}}$.
- 2. VSS stands for VSS for CA[9:0], CK, $\overline{\text{CK}}$, $\overline{\text{CS}}$, and CKE. VSS stands for VSS for DQ, DM, DQS, and $\overline{\text{DQS}}$.
- 3. Values are referenced from actual VDDQ, VDDCA and VSS levels.

Input / Output Capacitance

TOPER; VDDQ = 1.14-1.3V; VDDCA = 1.14-1.3V; VDD1 = 1.7-1.95V

Symbol	Parameter	LPDDR	Unit	
Symbol	Parameter	Min	Max	Onit
Сск	Input capacitance :	1	2	pF
JCK	CK, CK	·	_	μ.
C _{DCK}	Input capacitance delta :	0	0.2	pF
ODCK	CK, CK	U	0.2	ρi
Cı	Input capacitance:	1	2	pF
CI	all other input-only pins	l	۷	рг
C _{DI}	Input capacitance delta:	-0.4	0.4	pF
ODI	all other input-only pins	-0.4		ρi
Cio	Input/output capacitance :	1.25	2.5	nE
Cio	DQ, DQS, $\overline{\mathrm{DQS}}$, DM	1.23	2.0	pF
CDDQS	Input/output capacitance delta : DQS, DQS	0	0.25	pF
C _{DIO}	Input/output capacitance delta : DQ, DM	-0.5	0.5	pF
C _{ZQ}	Input/output capacitance : ZQ	0	2.5	pF

- 1. This parameter applies to die devices only (does not include package capacitance).
- 2. This parameter is not subject to production testing. It is verified by design and characterization. The capacitance is measured according to JEP147 (procedure for measuring input capacitance using a vector network analyzer), with VDD1, VDD2, VDDQ and VSS applied; all other pins are left floating.
- 3. Absolute value of CCK CCK.
- 4. CI applies to \overline{CS} , CKE, and CA[9:0].
- 5. CDI = CI $0.5 \times (CCK + \overline{CCK})$
- 6. DM loading matches DQ and DQS.
- 7. MR3 I/O configuration DS OP[3:0] = 0001B (34.3 ohm typical)
- 8. Absolute value of CDQS and CDQS.
- 9. CDIO = CIO $0.5 \times (CDQS + \overline{CDQS})$ in byte-lane.
- 10. Maximum external load capacitance on ZQ pin, including packaging, board, pin, resistor, and other LPDDR2 devices: 5pf.

IDD Specifications

LPDDR2 IDD Specification Parameters and Operating Conditions

Parameter/Condition	Symbol	Power Supply	Notes
Operating one bank active-precharge current: tCK = tCK(avg)min; tRC = tRCmin;	IDD01	VDD1	1
CKE is HIGH; CS is HIGH between valid commands;	IDD02	VDD2	1
CA bus inputs are SWITCHING; Data bus inputs are STABLE	IDD0in	VDDCA,VDDQ	1,4
Idle power-down standby current: tCK = tCK(avg)min;	IDD2P1	VDD1	1
CKE is LOW; CS is HIGH;	IDD2P2	VDD2	1
All banks/RBs idle; CA bus inputs are SWITCHING; Data bus inputs are STABLE	IDD2P,in	VDDCA,VDDQ	1,4
Idle power-down standby current with clock stop: CK =LOW, CK =HIGH;	IDD2PS1	VDD1	1
CKE is LOW; CS is HIGH; All banks/RBs idle;	IDD2PS2	VDD2	1
CA bus inputs are STABLE; Data bus inputs are STABLE	IDD2PS,in	VDDCA,VDDQ	1,4
Idle non power-down standby current: tCK = tCK(avg)min;	IDD2N1	VDD1	1
CKE is HIGH; CS is HIGH; All banks/RBs idle;	IDD2N2	VDD2	1
CA bus inputs are SWITCHING; Data bus inputs are STABLE	IDD2N,in	VDDCA,VDDQ	1,4
Idle non power-down standby current with clock stop: CK =LOW, CK =HIGH;	IDD2NS1	VDD1	1
CKE is HIGH; CS is HIGH; All banks/RBs idle;	IDD2NS2	VDD2	1
CA bus inputs are STABLE; Data bus inputs are STABLE	IDD2NSin	VDDCA,VDDQ	1
Active power-down standby current: tCK = tCK(avg)min;	IDD3P1	VDD1	1
CKE is LOW; CS is HIGH; One bank/RB active;	IDD3P2	VDD2	1
CA bus inputs are SWITCHING; Data bus inputs are STABLE	IDD3P,in	VDDCA,VDDQ	1,4

NANYA NM1282KSLAXAL

Active power-down standby current with clock stop: CK=LOW, CK=HIGH;	IDD3PS1	VDD1	1
CKE is LOW; CS is HIGH; One bank/RB active;	IDD3PS2	VDD2	1
CA bus inputs are STABLE; Data bus inputs are STABLE	IDD3PS,in	VDDCA,VDDQ	1,4
Active non power-down standby current: tCK = tCK(avg)min; CKE is HIGH:	IDD3N1	VDD1	1
CS is HIGH; One bank/RB active;	IDD3N2	VDD2	1
CA bus inputs are SWITCHING; Data bus inputs are STABLE	IDD3N,in	VDDCA,VDDQ	1,4
Active non power-down standby current with clock stop: CK=LOW, CK = HIGH;	IDD3NS1	VDD1	1
CKE is HIGH; CS is HIGH; One bank/RB active;	IDD3NS2	VDD2	1
CA bus inputs are STABLE; Data bus inputs are STABLE	IDD3NS,in	VDDCA,VDDQ	1,4
Operating burst read current:	IDD4R1	VDD1	1
tCK = tCK(avg)min; CS is HIGH between valid commands; One bank/RB active;	IDD4R2	VDD2	1
BL = 4; RL = RLmin; CA bus inputs are SWITCHING;	IDD4R,in	VDDCA	1
50% data change each burst transf	IDD4RQ	VDDQ	1,4
Operating burst write current: tCK = tCK(avg)min;	IDD4W1	VDD1	1
CS is HIGH between valid commands; One bank/RB active; BL = 4; WL = WLmin;	IDD4W2	VDD2	1
CA bus inputs are SWITCHING; 50% data change each burst transfer	IDD4W,in	VDDCA,VDDQ	1,4
All Bank Refresh Burst current: tCK = tCK(avg)min; CKE is HIGH between valid commands;	IDD51	VDD1	1
tRC = tRFCabmin; Burst refresh;	IDD52	VDD2	1
CA bus inputs are SWITCHING; Data bus inputs are STABLE;	IDD5IN	VDDCA,VDDQ	1,4
All Bank Refresh Average current: tCK = tCK(avg)min;	IDD5AB1	VDD1	1

NTC Proprietary

Level: Property

NANYA NM1282KSLAXAL

CKE is HIGH between valid commands; tRC = tREFI;	IDD5AB2	VDD2	1
CA bus inputs are SWITCHING; Data bus inputs are STABLE;	IDD5AB,in	VDDCA,VDDQ	1,4
Per Bank Refresh Average current: tCK = tCK(avg)min;	IDD5PB1	VDD1	1,6
CKE is HIGH between valid commands; tRC = tREFI/8;	IDD5PB2	VDD2	1,6
CA bus inputs are SWITCHING; Data bus inputs are STABLE;	IDD5PB,in	VDDCA,VDDQ	1,4,6

IDD Specifications (Continued)

LPDDR2 IDD Specification Parameters and Operating Conditions

Parameter/Condition	Symbol	Power Supply	Notes
Self refresh current (Standard Temperature Range): CK=LOW, CK=HIGH;	IDD61	VDD1	1,7
CKE is LOW; CA bus inputs are STABLE;	IDD62	VDD2	1,7
Data bus inputs are STABLE; Maximum 1x Self-Refresh Rate;	IDD6IN	VDDCA,VDDQ	1,4,7
Deep Power-Down current:	IDD81	VDD1	8
CK=LOW, CK=HIGH; CKE is LOW;	IDD82	VDD2	8
CA bus inputs are STABLE; Data bus inputs are STABLE;	IDD8IN	VDDCA,VDDQ	4,8

- 1. Published IDD values are the maximum of the distribution of the arithmetic mean and are measured at 85°C.
- 2. IDD current specifications are tested after the device is properly initialized.
- 3. The 1x self refresh rate is the rate at which the device is refreshed internally during self refresh, before going into the extended temperature range.
- 4. Measured currents are the summation of VDDQ and VDDCA.
- 5. Guaranteed by design with output load of 5pf and RON = 400hm.
- 6. Per Bank Refresh only applicable for LPDDR2-S4 devices of 1Gb or higher densities
- 7. This is the general definition that applies to full-array SELF REFRESH.
- 8. IDD8 are typical values. IDD8 is measured at 25 $^{\circ}\!\text{C}.$

IDD Specifications and Measurement Conditions

VDD2/VDDQ/VDDCA = 1.14~1.30V; VDD1 = 1.70~1.95V

C	ah al	Qmal	1066	1114
Sym	IDOI	Supply	SDP	Unit
	I _{DD01}	V _{DD1}	10	mA
IDD0	I _{DD02}	V_{DD2}	40	mA
	I _{DD0IN}	V _{DDCA} , V _{DDQ} ,	6	mA
	I _{DD2P1}	V _{DD1}	450	uA
IDD2P	I _{DD2P2}	V_{DD2}	600	uA
	I _{DD2PIN}	Vddca, Vddq,	50	uA
	I _{DD2PS1}	V _{DD1}	450	uA
IDD2PS	I _{DD2PS2}	V_{DD2}	600	uA
	I _{DD2PSIN}	Vddca, Vddq,	50	uA
	I _{DD2N1}	V _{DD1}	1	mA
IDD2N	I _{DD2N2}	V _{DD2}	15	mA
	I _{DD2NIN}	V _{DDCA} , V _{DDQ} ,	6	mA
	I _{DD2NS1}	V_{DD1}	1	mA
IDD2NS	I _{DD2NS2}	V _{DD2}	5	mA
	I _{DD2NSIN}	V _{DDCA} , V _{DDQ} ,	6	mA
	I _{DD3P1}	V_{DD1}	1200	uA
IDD3P	I _{DD3P2}	V_{DD2}	4	mA
	I _{DD3PIN}	$V_{DDCA}, V_{DDQ},$	100	uA
	I _{DD3PS1}	V _{DD1}	1200	uA
IDD3PS	I _{DD3PS2}	V_{DD2}	4	mA
	I _{DD3PSIN}	Vddca, Vddq,	100	uA
	I _{DD3N1}	V_{DD1}	1.2	mA
IDD3N	I _{DD3N2}	V_{DD2}	20	mA
	I _{DD3NIN}	V _{DDCA} , V _{DDQ} ,	6	mA
	I _{DD3NS1}	V _{DD1}	1.2	mA
IDD3NS	I _{DD3NS2}	V _{DD2}	7	mA
	I _{DD3NSIN}	V _{DDCA} , V _{DDQ} ,	6	mA

NANYA NM1282KSLAXAL

Sym	nbol	Supply	1066	Unit
			SDP	
	I _{DD4R1}	V_{DD1}	2	mA
IDD 4D	I _{DD4R2}	V_{DD2}	200	mA
IDD4R	I _{DD4RIN}	V _{DDCA}	6	mA
	I _{DD4RQ}	V_{DDQ}	240	mA
	I _{DD4W1}	V_{DD1}	2	mA
IDD4W	I _{DD4W2}	V_{DD2}	150	mA
	I _{DD4WIN}	V _{DDCA} , V _{DDQ} ,	25	mA
	I _{DD51}	V_{DD1}	15	mA
IDD5	I _{DD52}	V_{DD2}	110	mA
	I _{DD5IN}	V _{DDCA} , V _{DDQ} ,	6	mA
	I _{DD5AB1}	V_{DD1}	3	mA
IDD5AB	I _{DD5AB2}	V_{DD2}	20	mA
	I _{DD5ABIN}	V _{DDCA} , V _{DDQ} ,	6	mA
	I _{DD5PB1}	V_{DD1}	3	mA
IDD5PB	I _{DD5PB2}	V_{DD2}	20	mA
	I _{DD5PBIN}	Vddca, Vddq,	6	mA
	I _{DD81}	V_{DD1}	7.5	uA
IDD8	I _{DD82}	V_{DD2}	40	uA
	I _{DD8IN}	V _{DDCA} , V _{DDQ,}	10	uA

IDD Specifications and Measurement Conditions VDD2/VDDQ = 1.14~1.30V; VDD1 = 1.70~1.95V

IDD6 Partial Array Self-refresh current;

D.4.0.D		1066	Unit
PASR	Supply	SDP	
	V _{DD1}	700	uA
Full Array	V_{DD2}	2000	uA
	V _{DDQ}	50	uA
	V _{DD1}	650	uA
1/2 Array	V_{DD2}	1600	uA
	V _{DDQ}	50	uA
	V _{DD1}	600	uA
1/4 Array	V_{DD2}	1400	uA
	V _{DDQ}	50	uA
	V _{DD1}	550	uA
1/8 Array	V _{DD2}	1300	uA
	V _{DDQ}	50	uA

REFRESH Requirements by Device Density

LPDDR2-S4 Refresh Requirement Parameters

Symbol	Parameter	2Gb(SDP)	Unit
	Number of banks	8	
tREFW	Refresh window: TCASE ≤ 85°	32	ms
R	Required number of REFRESH commands (MIN)	8192	
tREFI	Average time between REFRESH commands	3.9	us
t REFIpb	TCASE ≤ 85°C	0.4875	us
tRFCab	Refresh cycle time	130	ns
t RFCpb	Per-bank REFRESH cycle time	60	ns
tREFBW	Burst REFRESH window = 4 × 8 × tRFCab	4.16	us

Electrical Characteristics and Recommended AC Timing

 $V_{DD2}, V_{DDQ}, V_{DDCA} = 1.14 \sim 1.30V; V_{DD1} = 1.70 \sim 1.95V$

Parameter	Symbol	min/ max	1066	Unit
			Clock Timing	
Max. Frequency		~	533	MHz
		min	1.875	ns
Average Clock Period	tCK(avg)	max	100	ns
		min	0.45	t CK(avg)
Average high pulse width	tCH(avg)	max	0.55	t CK(avg)
		min	0.45	tCK(avg)
Average low pulse width	tCL(avg)	max	0.55	t CK(avg)
Absolute Clock Period	tCK(abs)	min	tCK(avg)min + tJIT(per),min	ps
Absolute clock HIGH pulse width	tCH(abs),	min	0.43	tCK(avg)
(with allowed jitter)	allowed	max	0.57	tCK(avg)
Absolute clock LOW pulse width (with allowed jitter)	tCL(abs), allowed	min	0.43	t CK(avg)
		max	0.57	t CK(avg)
Parameter	Symbol	min/ max	1066	Unit
Clock Period Jitter	tJIT(per),	r(per), min -90		ps
(with allowed jitter)	allowed	max	90	ps
Maximum Clock Jitter between two consecutive clock cycles (with allowed jitter)	tJIT(cc), allowed	max	180	ps
Duty cycle Jitter	tJIT(duty),	min	min((tCH(abs),min - tCH(avg),min), (tCL(abs),min - tCL(avg),min)) * tCK(avg)	ps
(with allowed jitter)	allowed	max	max((tCH(abs),max - tCH(avg),max), (tCL(abs),max - tCL(avg),max)) * tCK(avg)	ps
	tERR(2per),	min	-132	ps
			132	ps
Cumulative error across 2 cycles	allowed	max		
	allowed tERR(3per),	max min	-157	ps
Cumulative error across 2 cycles Cumulative error across 3 cycles			-157 157	ps ps
	tERR(3per),	min		

NANYA NM1282KSLAXAL

Parameter	Symbol	min/ max	1066	Unit
Cumulative error across 5 cycles	tERR(5per),	min	-188	ps
Cumulative endi across 5 cycles	allowed	max	188	ps
Cumulativa arrar agraes 6 avalos	tERR(6per),	min	-200	ps
Cumulative error across 6 cycles	allowed	max	200	ps
Cumulativa arrar agraes 7 avalos	tERR(7per),	min	-209	ps
Cumulative error across 7 cycles	allowed	max	209	ps
0	tERR(8per),	min	-217	ps
Cumulative error across 8 cycles	allowed	max	217	ps
Cumpulativa array agree 0 avalag	tERR(9per),	min	-224	ps
Cumulative error across 9 cycles	allowed	max	224	ps
Cumulative error across 10	tERR(10per),	min	-231	ps
cycles	allowed	max	231	ps
Cumulative error across 11	tERR(11per),	min	-237	ps
cycles	allowed	max	237	ps
Cumulative error across 12	tERR(12per),	min	-242	ps
cycles	allowed	max	242	ps
Cumulative error across n = 13,	tERR(nper),	min	tERR(nper), allowed, min = (1 + 0.68ln(n)) * tJIT(per), allowed, min	ps
14 49, 50 cycles	allowed	max	tERR(nper), allowed, max = (1 + 0.68ln(n)) * tJIT(per), allowed, max	ps

Electrical Characteristics and Recommended AC Timing

 $V_{DD2}, V_{DDQ}, V_{DDCA} = 1.14 \sim 1.30 V; V_{DD1} = 1.70 \sim 1.95 V$

Symbol	Parameter	min/	min	Speed Grade	Unit
-		max	tCK	1066	J
	ZQ calibration	param	eters		
t ZQINIT	Calibration initialization Time	min		1	us
t ZQCL	Long (Full) Calibration Time	min	6	360	ns
tZQCS	Short Calibration Time	min	6	90	ns
tZQRESET	Calibration Reset Time	min	3	50	ns
	Read para	ameters			
4D08CK	DQS output access time from CK, CK	min		2500	ps
IDQSCK	tDQSCK DQS output access time from CK, CK			5500	ps
tDQSCKDS	DQSCK Delta Short	max		330	ps
t DQSCKDM	DQSCK Delta Medium	max		680	ps
tDQSCKDL	DQSCK Delta Long	max		920	ps
t DQSQ	DQS-DQ skew, DQS to last DQ valid, per group, per access	max		200	ps
t QHS	Data Hold Skew Factor	max		230	ps
t QSH	DQS output HIGH pulse width	min		tCH(abs) - 0.05	tck(avg)
t QSL	DQS output LOW pulse width	min		tCL(abs) - 0.05	tcĸ(avg)
t QHP	Data half period	min		min(tQSH, tQSL)	tcĸ(avg)
t QH	DQ / DQS output hold time from DQS	min		tQHP - tQHS	ps
Symbol	Parameter	min/	min	Speed Grade	Unit
Зушьог	r ai ailletei	max	^t CK	1066	Onit
	Read para	ameters			
t RPRE	READ Preamble	min		0.9	tcĸ(avg)
t RPST	READ Postamble	min		tCL(abs) - 0.05	tcĸ(avg)
tLZ(DQS)	DQS Low-Z from CK	min		tDQSCK _{min} – 300	ps
tLZ(DQ)	DQ Low-Z from CK	min		tDQSCK(MIN) - (1.4 x tQHS(MAX))	ps
tHZ(DQS)	DQS High-Z from CK	max		tDQSCK _{max} – 100	ps
tHZ(DQ)	DQ High-Z from CK	max		tDQSCK(MAX) + (1.4 × tDQSQ(MAX))	ps

NANYA NM1282KSLAXAL

		min/	min	Speed Grade	
Symbol	Parameter	max	¹CK	1066	Unit
	Write para	meters			-
tDH	DQ and DM input hold time (V _{REF} based)	min		210	ps
tDS	DQ and DM input setup time (V _{REF} based)	min		210	ps
t DIPW	DQ and DM input pulse width	min		0.35	tck(avg)
4D000	Write command to 1st DQS latching transition	min		0.75	tck(avg)
tDQSS	white command to 1" DQS latening transition	max		1.25	tck(avg)
t DQSH	DQS input high-level width	min		0.4	tck(avg)
t DQSL	DQS input low-level width	min		0.4	tck(avg)
tDSS	DQS falling edge to CK setup time	min		0.2	tck(avg)
tDSH	DQS falling edge hold time from CK	min		0.2	tck(avg)
t WPST	Write postamble	min		0.4	tck(avg)
t WPRE	Write preamble	min		0.35	tck(avg)
Comple ed	Davamatan	min/	min	Speed Grade	11
Symbol	Parameter	max	^t CK	1066	Unit
	CKE input pa	aramete	ers		,
t CKE	CKE min. pulse width (high and low)	min	3	3	tck(avg)
tISCKE	CKE input setup time	min		0.25	tck(avg)
tIHCKE	CKE input hold time	min		0.25	tck(avg)
	Command / Address	Input p	oarame	ters	
tIH	Address and Control input hold time	min		220	ps
tIS	Address and Control input setup time	min		220	ps
tIPW	Address and Control input pulse width	min		0.4	tck(avg)
	Mode register	parame	eters		
tMRR	MODE Register Read command period	min	2	2	tck(avg)
t MRW	MODE Register Write command period	min	5	5	tck(avg)
	SDRAM core	oarame	ters		
RL	Read Latency	min	3	8	tck(avg)
WL	Write Latency	min	1	4	tck(avg)
tCKESR	CKE minimum pulse width during SELF REFRESH	min	3	15	ns
LONLON	(low pulse width during SELF REFRESH)	111111	J	10	113
tXSR	Exit SELF REFRESH to first valid command (min)	min	2	tRFC _{AB} +10	ns

NANUA NM1282KSLAXAL

		min/	min	Speed Grade	
Symbol	Parameter	max	†CK	1066	Unit
	SDRAM core	parame	ters		-
tXP	Exit power-down mode to first valid command	min	2	7.5	ns
t DPD	Minimum Deep Power-Down time	min	-	500	us
t FAW	Four-Bank Activate Window		8	50	ns
t WTR	Internal WRITE to READ command delay	min	2	7.5	ns
t RC	ACTIVE to ACTIVE command period	min		$tRAS + tRP_{AB}$ (with all-bank Precharge) $tRAS + tRP_{PB}$ (with per-bank Precharge)	ns
tCCD	CAS-to-CAS delay	min	2	2	tck(avg)
t RTP	Internal READ to PRECHARGE command delay	min	2	7.5	ns
tRCD	RAS-to-CAS delay	min	3	18	ns
4D A C	Davi Astina Tima	min	3	42	ns
t RAS	Row Active Time		-	70	us
t WR	Write recovery time	min	3	15	ns
t RPpb	PRECHARGE command period (single bank)	min	3	15	ns
t RPab	PRECHARGE command period (all banks – 8bank)	min	3	18	ns
t RRD	ACTIVE bank-a to ACTIVE bank-b command	min	2	10	ns
Symbol	Parameter		min	Speed Grade	Unit
Cymbo.	- aramoto	max	^t CK	1066	Onic
	Boot parameters (10MHz	~ 55MH	lz)	
4OVh	Cleal, sugle time	min		18	ns
t CKb	Clock cycle time	max		100	ns
tISCKEb	CKE input setup time	min		2.5	ns
tIHCKEb	CKE input hold time	min		2.5	ns
t ISb	Input setup time	min		1150	ps
Symbol	Parameter	min/	min	Speed Grade	l lmit
Syllibol	r al allietei	max	¹CK	1066	Unit
	Boot parameters (10MHz	~ 55MH	lz)	
t IHb	Input hold time	min		1150	ps
*DOSCI/L	Access window of DOC from OV	min		2.0	ns
t DQSCKb	Access window of DQS from CK, CK	max		10.0	ns
t DQSQb	DQS-DQ skew	max		1.2	ns
t QHSb	Data hold skew factor	max		1.2	ns

CA and CS Setup and Hold Base Values

Damana dan	Data Rate	Defenses
Parameter	1066	Reference
tIS (base)	0	VIH/VIL(AC) = VREF(DC) ± 220 mV
tIH (base)	90	VIH/VIL(DC) = VREF(DC) ± 130 mV

Notes: AC/DC referenced for 1 V/ns CA and $\overline{\text{CS}}$ slew rate and 2 V/ns differential CK, $\overline{\text{CK}}$ slew rate.

CA and $\overline{\text{CS}}$ Setup, Hold, and Derating (Continued)

Derating Values for AC/DC-based tIS/tIH (AC220, DC130)

Derating valu	Defaulting values for AC/DC-based tis/tin (AC220, DC130)																
AC220 DC130 Threshold																	
CK, CK Differential Slew Rate																	
		4.0 \	V/ns	3.0 \	//ns	2.0 \	V/ns	1.8 `	V/ns	1.6	V/ns	1.4	V/ns	1.2	V/ns	1.0	V/ns
		∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tIH	∆tIS	∆tlH
	2	110	65	110	65	110	65										
	1.5	74	43	73	43	73	43	89	59								
	1	0	0	0	0	0	0	16	16	32	32						
CA, CS	0.9			-3	-5	-3	-5	13	11	29	27	45	43				
Slew rate	0.8					-8	-13	8	3	24	19	40	35	56	55		
V/ns	0.7							2	-6	18	10	34	26	50	46	66	78
	0.6									10	-3	26	13	42	33	58	65
	0.5											4	-4	20	16	36	48
	0.4													-7	2	17	34

Notes: Cell contents shaded in yellow are defined as "not supported."

Required time tVAC above VIH(ac) {below VIL(ac)} for valid transition

Clave Data (VIna)	tVAC @ 2	20mV [ps]
Slew Rate (V/ns)	Min	Max
>2.0	175	-
2.0	170	-
1.5	167	-
1.0	163	_
0.9	162	_
0.8	161	-
0.7	159	-
0.6	155	_
0.5	150	_
<0.5	150	_

Data Setup and Hold Base Values

Parameter	Data Rate	Defenses		
	1066	Reference		
tDS (base)	-10	VIH/VIL(AC) = VREF(DC) ± 220 mV		
tDH (base)	80	VIH/VIL(DC) = VREF(DC) ± 130 mV		

Notes: AC/DC referenced for 1 V/ns DQ, DM slew rate, and 2 V/ns differential DQS, \overline{DQS} slew rate.

Derating Values for AC/DC-based tDS/tDH (AC220, DC130)

Defailing values for AC/DC-based (DS/(DFF (AC220, DC 130)																	
AC220 DC130 Threshold																	
			DQS, DQS Differential Slew Rate														
		4.0	V/ns	3.0 \	V/ns	2.0	V/ns	1.8	V/ns	1.6 V/ns		1.4	V/ns	1.2	V/ns	1.0 V/ns	
		∆tIS	∆tlH	∆tIS	∆tIH	∆tIS	∆tIH	∆tIS	∆tIH	∆tIS	∆tIH	∆tIS	∆tlH	∆tIS	∆tlH	∆tIS	∆tIH
	2	110	65	110	65	110	65										
	1.5	74	43	73	43	73	43	89	59								
	1	0	0	0	0	0	0	16	16	32	32						
DQ,DM	0.9			-3	-5	-3	-5	13	11	29	27	45	43	,			
Slew rate	0.8					-8	-13	8	3	24	19	40	35	56	55		
V/ns	0.7							2	-6	18	10	34	26	50	46	66	78
	0.6									10	-3	26	13	42	33	58	65
	0.5											4	-4	20	16	36	48
	0.4													-7	2	17	34

Notes: Cell contents shaded in light purple are defined as "not supported."

Required time tVAC above VIH(ac) {below VIL(ac)} for valid transition

Class Data (Mrs.)	tVAC @ 2	20mV [ps]
Slew Rate (V/ns)	Min	Max
>2.0	175	-
2.0	170	-
1.5	167	_
1.0	163	_
0.9	162	-
0.8	161	-
0.7	159	-
0.6	155	_
0.5	150	_
<0.5	150	_

Initialization Timing Parameters

Symbol	Parameter	Va	Value			
		min	max	_		
tINIT0	Maximum Power Ramp Time	-	20	ms		
tINIT1	Minimum CKE low time after completion of power ramp	100	-	ns		
tINIT2	Minimum stable clock before first CKE high	5	-	^t CK		
tINIT3	Minimum idle time after first CKE assertion	200	-	us		
tINIT4	Minimum idle time after Reset command,	1				
	this time will be about 2 x ^t RFCab + ^t RPab	ı	-	us		
tINIT5	Maximum duration of Device Auto-Initialization	-	10	us		
^t ZQINIT	ZQ Initial Calibration	1	-	us		
^t CKb	Clock cycle time during boot	18	100	ns		

Power-Off Timing

Symbol	Parameter	Min	Max	Unit
tPOFF	Maximum power-off ramp time	-	2	S

NANYA NM1282KSLAXAL

Mode Register Assignment

WIOGE IN	egister Assi	gninent										
MR#	MA <7:0>	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0	
0	00н	Device Info	R		(RFU)		RZ	QI	(RFU)	DI	DAI	
1	01н	Device Feature1	W	nW	R (for A	NP)	wc	VC BT			BL	
2	02н	Device Feature2	W		(RF	U)			RL 8	& WL		
3	03н	I/O Config-1	W		(RF	·U)			D	s		
4	04н	Refresh Rate	R	TUF		(RF	U)		Ref	fresh R	ate	
5	05н	Basic Config-1	R			N	lanufac	cturer I	D			
6	06н	Basic Config-2	R				Revisi	on ID1				
7	07н	Basic Config-3	R				Revisi	on ID2				
8	08н	Basic Config-4	R	I/O w	/idth		Dens	sity		Ту	ре	
9	09н	Test Mode	W			Sp	ecific 1	Test Mo	de			
10	0Ан	IO Calibration	W			С	alibrati	on Cod	de			
11~15	0Вн~0Гн	(Reserved)		(RFU)								
16	10н	PASR_BANK	W	Bank Mask (4-Bank or 8-Bank)								
17	11 _H	PASR_Seg	W			;	Segmei	nt Masl	(
18-19	12 _н -13 _н	(Reserved)					(RF	U)				
20-31	18н-1Fн	Reserved for NVM										
32	20н	DQ calibration pattern A	R		See "[Data Ca	libratior	n Patter	n Desci	ription"		
33-39	21 _H -27 _H	(Do Not Use)										
40	28н	DQ calibration pattern B	R		See "[Data Ca	libratior	n Patter	n Desci	ription"		
41-47	29н-2Fн	(Do Not Use)					(DN	IU)				
48-62	30н-3Ен	(Reserved)					(RF	U)				
63	3Fн	Reset	W	X								
64-126	40н-7Ен	(Reserved)		(RFU)								
127	7F _H	(Do Not Use)		(DNU)								
128-190	80н-ВЕн	(Reserved)		(RFU)								
191	ВГн	(Do Not Use)					(DN	IU)				
192-254	С0н-FЕн	(Reserved)					(RF	U)				
255	FF _H	(Do Not Use)		(DNU)								

^{1.} RFU bits shall be set to "0" during Mode Register writes. RFU bits shall be read as "0" during Mode Register reads. All Mode Registers that are specified as RFU shall not be written. Writes to read-only registers shall have no impact on the functionality of the device.

^{2.} All Mode Registers from that are specified as RFU or write-only shall return undefined data when read and DQS shall be toggled.

NANUA NM1282KSLAXAL

MR0_Device Information (MA<7:0> = 00H)											
MR#	MA <7:0>	Function	Access	ОР7	OP6	OP5	OP4	ОР3	OP2	OP1	OP0
0	00н	Device Info	R		(RFU)		RZ (Optio	-	(RFU)	DI	DAI

OP0	DAI (Device Auto-Initialization Status)	Read-only	0 _B : DAI complete 1 _B : DAI still in progress
OP1	DI (Device Information)	Read-only	0 _B : S2 or S4 SDRAM 1 _B : Do Not Use
OP<4:3>	RZQI (Built in Self Test for RZQ Information)	Read-only	00 _B : RZQ self test not supported 01 _B : ZQ-pin may connect to VDDCA or float 10 _B : ZQ-pin may short to GND 11 _B : ZQ-pin self test completed, no error condition detected (ZQpin may not connect to VDDCA or float nor short to GND)

Notes:

1. RZQI, if supported, will be set upon completion of the MRW ZQ Initialization Calibration command.

MR1_Device Feature 1 (MA<7:0> = 01_H)

MR#	MA <7:0>	Function	Access	ОР7	OP6	OP5	OP4	ОР3	OP2	OP1	OP0
1	01н	Device Feature1	W	nW	R (for A	NP)	wc	вт		BL	

OP<2:0>	BL (Burst Length)	Write-only	010 _B : BL4 (default) 011 _B : BL8 100 _B : BL16 All others: reserved
OP3	BT¹ (Burst Type)	Write-only	0 _B : Sequential (default) 1 _B : Interleaved
OP4	WC (Wrap)	Write-only	0 _B : Wrap (default) 1 _B : No wrap (allowed for SDRAM BL4 only)
OP<7:5>	nWR² (for AP)	Write-only	001 _B : nWR=3 (default) 010 _B : nWR =4 011 _B : nWR =5 100 _B : nWR =6 101 _B : nWR =7 110 _B : nWR =8 All others: reserved

- BL16, interleaved is not an official combination to be supported. 1.
- Programmed value in nWR register is the number of clock cycles which determines when to start internal precharge operation for a write burst with AP enabled. It is determined by RU(tWR/tCK).

NANYA NM1282KSLAXAL

Burst Sequence by BL, BT, WC and column address

										Bu	rst Cy	cle N	umbe	r and	Burst	Addr	ess S	equei	nce				
C3	C2	C1	C0	WC	ВТ	BL	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
											BL4												
х	х	0 _B	O _B	wrar	any		0	1	2	3													
х	х	1 _B	0 _B	wiap	arry	4	2	3	0	1													
Х	Х	Х	0в	nw	any	-	у	y+1	y+2	y+3													
											DIO												
		0	0				0		0	0	BL8	_	0	_									
Х	0 _B	0 _B	0 _B				0	1	2	3	4	5	6	7									
X	O _B	1 _B	0 _B		seq		2	3	4	5	6	7	0	1									
Х	1 _B	Ов	0в				4	5	6	7	0	1	2	3									
Х	1 _B	1 _B	O _B	wrap		8	6	7	0	1	2	3	4	5									
X	O _B	0 _B	0 _B				0	1	2	3	4	5	6	7									
Х	O _B	1 _B	0 _B		int	int		2	3	0	1	6	7	4	5								
X	1 _B	0в	0 _B				4	5	6	7	0	1	2	3									
Х	1 _B	1 _B	0 _B				6	7	4	5	2	3	0	1									
х	х	Х	0 _B	nw	any									gal (no									
C3	C2	C1	CO	wc	вт	BL					st Cyc												
							1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
											BL16												
0 _B	O _B	0 _B	0 _B				0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	
O _B	O _B	1 _B	O _B				2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	0	1	
0 _B	1 _B	0 _B	0 _B				4	5	6	7	8	9	Α	В	С	D	Е	F	0	1	2	3	
0в	1 _B	1 _B	0 _B		seq		6	7	8	9	Α	В	С	D	Е	F	0	1	2	3	4	5	
1 _B	O _B	O _B	O _B	wrap	554	16	8	9	Α	В	С	D	Е	F	0	1	2	3	4	5	6	7	
1 _B	O _B	1 _B	0 _B			16	Α	В	С	D	Е	F	0	1	2	3	4	5	6	7	8	9	
1 _B	1 _B	0в	0 _B				С	D	Е	F	0	1	2	3	4	5	6	7	8	9	Α	В	
1 _B	1 _B	1 _B	0 _B				Е	F	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	
х	х	Х	O _B		int								ille	gal (no	t allow	red)							
х	х	Х	0 _B	nw	any		illegal (not allowed)																

Notes:

- $1.\ \mbox{CO}$ input is not present on CA bus. It is implied zero.
- 2. For BL=4, the burst address represents C1~C0.
- 3. For BL=8, the burst address represents C2 $^{\sim}$ C0.
- 4. For BL=16, the burst address represents C3~C0.
- 5. For no-wrap, BL4, the burst must not cross the page boundary or the sub-page boundary. The variable y can start at any address with CO equal to 0, but must not start at any address shown bellow.

Version 1.3104Nanya Technology Corp.06/2018All Rights Reserved. ©

NTC Proprietary Level: Property

Non-Wrap Restrictions

NANUA NM1282KSLAXAL

Width	64Mb	128Mb/256Mb	512Mb/1Gb/2Gb	4Gb/8Gb
	С	annot cross full page bo	oundary	
X16	FE, FF, 00, 01	1FE, 1FF, 000, 001	3FE, 3FF, 000, 001	7FE, 7FF, 000, 001
X32	7E, 7F, 00, 01	FE, FF, 00, 01	1FE, 1FF, 000, 001	3FE, 3FF, 000, 001
	Ca	annot cross sub-page bo	oundary	
X16	7E, 7F, 80, 81	0FE, 0FF, 100, 101	1FE, 1FF, 200, 201	3FE, 3FF, 400, 401
X32	none	none	None	none

Notes: Non-wrap BL= 4 data orders shown are prohibited.

NANYA NM1282KSLAXAL

$MR2_Device Feature 2 (MA<7:0> = 02H)$

MR#	MA <7:0>	Function	Access	ОР7	OP6	OP5	OP4	ОР3	OP2	OP1	OP0
2	02н	Device Feature2	W	(RFU)				RL 8	& WL		

			0001 _B : RL3 / WL1 (default)
			0010 _B : RL4 / WL2
	RL & WL		0011 _B : RL5 / WL2
OP<3:0>	(Read Latency &	Write-only	0100 _B : RL6 / WL3
	Write Latency)		0101 _B : RL7 / WL4
			0110 _B : RL8 / WL4
			All others: reserved

MR3_I/O Configuration 1 (MA<7:0> = 03H)

MR#	MA <7:0>	Function	Access	ОР7	OP6	OP5	OP4	ОР3	OP2	OP1	OP0
3	03н	I/O Config-1	W	(RFU)					C	S	

OP<3:0>	DS (Drive Strength)	Write-only	0000 _B : reserved 0001 _B : 34.3 ohm typical 0010 _B : 40.0 ohm typical (default) 0011 _B : 48.0 ohm typical 0100 _B : 60.0 ohm typical 0101 _B : reserved 0110 _B : 80.0 ohm typical 0111 _B : 120.0 ohm typical
			All others: reserved

MR4_Device Temperature (MA<7:0> = 04H)

MR#	MA <7:0>	Function	Access	ОР7	OP6	OP5	OP4	ОР3	OP2	OP1	OP0
4	04н	Refresh Rate	R	TUF	(RFU)			Refresh Rate			

OP<2:0>	Refresh Rate	Read-only	000 _B : SDRAM Low temperature operating limit exceeded 001 _B : 4x tREFI, 4x tREFIpb, 4x tREFW 010 _B : 2x tREFI, 2x tREFIpb, 2x tREFW 011 _B : 1x tREFI, 1x tREFIpb, 1x tREFW (<=85C) 100 _B : RFU 101 _B : 0.25x tREFI, 0.25x tREFIpb, 0.25x tREFW, do not de-rate SDRAM AC timing 110 _B : 0.25x tREFI, 0.25x tREFIpb, 0.25x tREFW, de-rate SDRAM AC timing 111 _B : SDRAM High temperature operating limit exceeded
OP7	TUF (Temperature Update Flag)	Read-only	0 _B : OP<2:0> value has not changed since last read of MR4. 1 _B : OP<2:0> value has changed since last read of MR4.

- 1. A Mode Register Read from MR4 will reset OP7 to "0".
- OP7 is reset to "0" at power-up.
- If OP2 equals "1", the device temperature is greater than 85C.
- OP7 is set to "1", if OP2~OP0 has changed at any time since the last read of MR4.
- LPDDR2 might not operate properly when $OP<2:0> = 000_B$ or 111_B .
- 6. For specified operating temperature range and maximum operating temperature.
- 7. LPDDR2 devices must be derated by adding 1.875ns to the following core timing parameters: tRCD, tRC, tRAS, tRP and tRRD. The tDQSCK parameter must be derated. Prevailing clock frequency specifications and related setup and hold timings remain unchanged.
- The recommended frequency for reading MR4 is provided in "Temperature Sensor".

MR5_Basic Configuration-1 (MA<7:0> = 05H)

MR#	MA <7:0>	Function	Access	ОР7	OP6	OP5	OP4	ОР3	OP2	OP1	OP0
5	05н	Basic Config-1	R			ı	Manufa	cturer l	D		

OP<7:0>	Manufacturer ID	Read-only	0000 0000B: Reserved 0000 0001B: Samsung 0000 0010B: Qimonda 0000 0011B: Elpida 0000 0100B: Etron 0000 0101B: Nanya 0000 0111B: Mosel 0000 1000B: Winbond 0000 1000B: ESMT 0000 1010B: Reserved 0000 1011B: Spansion 0000 1010B: SST 0000 1100B: JINTEL 1111 1110B: Numonyx 1111 1111B: Micron All Others: Reserved
---------	-----------------	-----------	---

MR6_Basic Configuration-2 (MA<7:0> = 06H)

MR#	MA <7:0>	Function	Access	ОР7	OP6	OP5	OP4	ОР3	OP2	OP1	OP0
6	06н	Basic Config-2	R				Revis	ion ID1			

OP<7:0> Revision ID1 Rea	d-only Reserved ¹
--------------------------	------------------------------

Notes:

Please contact with NTC for details

MR7_Basic Configuration-3 (MA<7:0> = 07H)

MR#	MA <7:0>	Function	Access	ОР7	OP6	OP5	OP4	ОР3	OP2	OP1	OP0
7	07н	Basic Config-3	R				Revis	ion ID2			

OP<7:0>	Revision ID2	Read-only	Reserved ¹
---------	--------------	-----------	-----------------------

Notes:

1. Please contact with NTC for details

NANYA NM1282KSLAXAL

MR8_Basic Configuration-4 (MA<7:0> = 08H)

MR#	MA <7:0>	Function	Access	ОР7	OP6	OP5	OP4	ОР3	OP2	OP1	OP0
8	08н	Basic Config-4	R	I/O w	ridth		Den	sity		Ту	pe

			00 _B : S4 SDRAM
			01 _B : S2 SDRAM
OP<1:0>	Туре	Read-only	10 _B : N NVM
			11 _B : Reserved
			0000 _B : 64Mb
			0001 _B : 128Mb
			0010 _в : 256Мb
			0011 _B : 512Mb
		Read-only	0100 _B : 1Gb
OP<5:2>	Density		0101 _B : 2Gb
			0110 _B : 4Gb
			0111 _B : 8Gb
			1000 _в : 16Gb
			1001 _B : 32Gb
			All others: reserved
			00 _B : x32
OP<7:6>	I/O width	Pood only	01 _B : x16
UF<1.0>	i/O width	Read-only	10 _B : x8
			11 _B : not used

$MR9_Test Mode (MA<7:0> = 09H)$

MR#	MA <7:0>	Function	Access	ОР7	OP6	OP5	OP4	ОР3	OP2	OP1	OP0	
9	09н	Test Mode	W			Sp	ecific ⁻	Test Mo	ode			

OP<7:0>	Specific Test Mode	Reserved ¹

Notes:

1. Please contact with NTC for details

$MR10_Calibration (MA<7:0> = 0AH)$

MR#	MA <7:0>	Function	Access	ОР7	OP6	OP5	OP4	ОР3	OP2	OP1	OP0	
10	0Ан	IO Calibration	W			C	alibrat	ion Cod	de			

OP<7:0>	Calibration Code	Write-only	0Xff: Calibration command after initialization 0Xab: Long calibration 0x56: Short calibration 0Xc3: ZQ Reset All others: Reserved
---------	------------------	------------	---

Notes:

- 1. Host processor shall not write MR10 with "Reserved" values.
- 2. LPDDR2 devices shall ignore calibration command, when a "Reserved" values is written into MR10.
- 3. See AC timing table for the calibration latency.
- 4. If ZQ is connected to VSS through RZQ, either the ZQ calibration function (see "MRW ZQ Calibration Command") or default calibration (through the ZQ RESET command) is supported. If ZQ is connected to VDDCA, the device operates with default calibration, and ZQ calibration commands are ignored. In both cases, the ZQ connection must not change after power is supplied to the device. Devices that do not support calibration ignore the ZQ calibration command.

Version 1.3 Nanya Technology Corp.
06/2018 All Rights Reserved. ©

NTC Proprietary Level: Property

NANUA NM1282KSLAXAL

MR11:15_(Reserved) (MA<7:0> = 0BH- 0FH)

MR#	MA <7:0>	Function	Access	ОР7	OP6	OP5	OP4	ОР3	OP2	OP1	OP0
11~15	0Вн~0Гн	(reserved)		(RFU)							

OP<7:0> RFU	Reserved for Future Use
--------------------	-------------------------

MR16_PASR_Bank Mask (MA<7:0> = 010H)

MR#	MA <7:0>	Function	Access	ОР7	OP6	OP5	OP4	ОР3	OP2	OP1	OP0
16	10н	PASR_BANK	W		E	Bank M	ask (4-	Bank o	8-Ban	k)	

OP<7:0>	Bank Mask (4-Bank or 8-Bank)	Write-only	0 _B : refresh enable to the bank (=unmasked, default)
UP<1.0>	Dalik Mask (4-Dalik Of o-Dalik)	vviite-orily	1 _B : refresh blocked (=masked)

ОР	For 4-bank S4 SDR Bank Mask	AM, only OP<3:0> a 4 Bank	re used 8 Bank
0	XXXXXXX1	Bank 0	Bank 0
1	XXXXXX1X	Bank 1	Bank 1
2	XXXXX1XX	Bank 2	Bank 2
3	XXXX1XXX	Bank 3	Bank 3
4	XXX1XXXX	-	Bank 4
5	XX1XXXXX	-	Bank 5
6	X1XXXXXX	-	Bank 6
7	1XXXXXXX	-	Bank 7

Version 1.3 115 Nanya Technology Corp. All Rights Reserved. ©

MR17_PASR_Segment Mask (MA<7:0> = 011H)

MR#	MA <7:0>	Function	Access	ОР7	OP6	OP5	OP4	ОР3	OP2	OP1	OP0
17	11 _H	PASR_Seg	W				Segme	nt Mask			

OP<7:0>	Segment Mask	Write-only	\ensuremath{O}_B : refresh enable to the segment (=unmasked, default)
01 <7.02	oegment wask	vviite offiny	1 _B : refresh blocked (=masked)

This table indicates the range of row addresses in each masked segment. X is don't care for a particular segment.

0	0.0	D I - 14 I -	1Gb	2Gb, 4Gb	8Gb					
Segment	OP	Bank Mask	R12:10	R13:11	R14:12					
0	0	XXXXXXX1	000 _B							
1	1	XXXXXX1X	001 _B							
2	2	XXXXX1XX	010 _B							
3	3	XXXX1XXX	011 _B							
4	4	XXX1XXXX		100 _B						
5	5	XX1XXXXX	101 _B							
6	6	X1XXXXXX	110 _B							
7	7	1XXXXXXX	111 _B							

NANYA NM1282KSLAXAL

$MR18:19_{Reserved}$ (MA<7:0> = 012H- 013H)

MR#	MA <7:0>	Function	Access	ОР7	OP6	OP5	OP4	ОР3	OP2	OP1	OP0
18-19	12н-13н	(Reserved)					(RF	TU)			

OP<7:0>	RFU	Reserved for Future Use
---------	-----	-------------------------

MR20:31_(Do Not Use) (MA<7:0> = 014H- 01FH)

MR#	MA <7:0>	Function	Access	ОР7	OP6	OP5	OP4	ОР3	OP2	OP1	OP0
20-31	18 _н -1F _н	Reserved for NVM									

OP<7:0>	Reserved for NVM	N/A
---------	------------------	-----

MR32_ DQ calibration pattern A (MA<7:0> = 020H)

MR40_ DQ calibration pattern B (MA<7:0> = 028H)

MR#	MA <7:0>	Function	Access	ОР7	OP6	OP5	OP4	ОР3	OP2	OP1	OP0
32	20н	DQ calibration pattern A	R	See "Data Calibration Pattern Description"							
40	28н	DQ calibration pattern B	R	See "Data Calibration Pattern Description"							

OP<7:0>	DQ calibration pattern A	See "Data Calibration Pattern Description"
OP<7:0>	DQ calibration pattern B	See "Data Calibration Pattern Description"

MR63_Reset (MA<7:0> = 03FH): MRW only

MR#	MA <7:0>	Function	Access	ОР7	OP6	OP5	OP4	ОР3	OP2	OP1	OP0
63	3FH	Reset	W	X							

		X
OP<7:0>	Reset	(For additional information on MRW RESET, see "Mode Register Write Command"
		on Timing Spec)

Do Not Use and Reserved functions

MR#	MA <7:0>	Function	Access	ОР7	OP6	OP5	OP4	ОР3	OP2	OP1	OP0	
17	11H	d (reserved)		(RFU)								
33-39	21н-27н	(Do Not Use)		(DNU)								
41-47	29H-2FH	-2FH (Do Not Use)		(DNU)								
48-62	30H-3EH (Reserved)			(RFU)								
64-126	40H-7EH (Reserved)			(RFU)								
127	7FH (Do Not Use)			(DNU)								
128-190	90 80H-BEH (Reserved)			(RFU)								
191	BFH (Do Not Use)			(DNU)								
192-254	4 C0H-FEH (Reserved)			(RFU)								
255	FFH	(Do Not Use)		(DNU)								

Version 1.3 118 Nanya Technology Corp. All Rights Reserved. ©

NTC Proprietary

Level: Property

Revision History

Rev	Page	Modified	Description	Released
1.3	-	-	Official Release	06/2018

http://www.nanya.com/